Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Маленькие манипуляторы: советы родителям, которые идут на поводу у ребенка Ребенок манипулятор психология

Проявление туберкулеза при беременности и способы лечения

Что такое лента Мебиуса? Лента Мебиуса - загадка современности

Существуют научные знания и явления, которые привносят в обыденность нашей жизни тайну и загадку. Лента Мебиуса относится к ним в полной мере.

Современная математика замечательно описывает при помощи формул все ее свойства и особенности. А вот обычные люди, слабо разбирающиеся в топонимике и других геометрических премудростях, практически ежедневно сталкиваются с предметами, изготовленными по ее образу и подобию, даже не подозревая об этом.

Что это такое? Кто и когда ее открыл?

Лента Мебиуса, которую также называют петлей, поверхностью или листом, – это объект изучения такой математической дисциплины, как топология, исследующей общие свойства фигур, сохраняющихся при таких непрерывных преобразованиях, как скручивание, растяжение, сжатие, изгибание и других, не связанных с нарушением целостности. Удивительной и неповторимой особенностью такой ленты является то, что он имеет всего одну сторону и край и никак не связаны с ее расположением в пространстве. Лист Мебиуса является топологическим, то есть непрерывным объектом с простейшей односторонней поверхностью с границей в обычном Евклидовом пространстве (3-мерном), где возможно из одной точки такой поверхности, не пересекая края, попасть в любую другую.

Такой непростой объект, как лента Мебиуса, был и открыт довольно необычно. Прежде всего отметим, что два математика, абсолютно не связанные между собой в исследованиях, открыли ее одновременно – в 1858 году. Еще одним интересным фактом является то, что оба этих ученых в разное время являлись учениками одного и того же великого математика - Иоганна Карла Фридриха Гаусса. Так, вплоть до 1858 года считалось, что любая поверхность обязана иметь две стороны. Однако Иоганн Бенедикт Листинг и Август Фердинанд Мебиус открыли геометрический объект, у которого была всего одна сторона, и описывают его свойства. Лента была названа в честь Мебиуса, а вот отцом-основателем «резиновой геометрии» топологи считают Листинга и его труд «Предварительные исследования по топологии».

Свойства

Ленте Мебиуса присущи следующие свойства, не меняющиеся при ее сжимании, разрезании вдоль или сминании:

1. Наличие одной стороны. А. Мебиус в своем труде «Об объеме многогранников» описал геометрическую поверхность, названную затем в его честь, обладающую всего одной стороной. Проверить это довольно просто: берем ленту или лист Мебиуса и стараемся закрасить внутреннюю сторону одним цветом, а внешнюю – другим. Не суть важно, в каком месте и направлении было начато окрашивание, вся фигура будет закрашена одним цветом.

2. Непрерывность выражается в том, что любую точку этой геометрической фигуры можно соединить с любой другой ее точкой, не пересекая границы поверхности Мебиуса.

3. Связность, или двухмерность, заключается в том, что при разрезании ленты вдоль, из нее не получится несколько разных фигур, и она остается цельной.

4. В ней отсутствует такое важное свойство, как ориентированность. Это значит, что человек, идущий по этой фигуре, вернется к началу своего пути, но только в зеркальном отражении самого себя. Таким образом, бесконечная лента Мебиуса может привести к вечному путешествию.

5. Особый хроматический номер, показывающий, какое максимально возможное число областей на поверхности Мебиуса, можно создать так, чтобы у любой из них была общая граница со всеми другими. Лента Мебиуса имеет хроматический номер – 6, а вот кольцо из бумаги – 5.

Научное использование

Сегодня лист Мебиуса и его свойства широко применяются в науке, служа основой для построения новых гипотез и теорий, проведения исследований и экспериментов, создания новых механизмов и устройств.

Так, существует гипотеза, согласно которой Вселенная - это огромнейшая петля Мебиуса. Косвенно об этом свидетельствует и теория относительности Эйнштейна, согласно которой даже полетевший прямо корабль может вернуться в ту же временную и пространственную точку, откуда стартовал.

Другая теория рассматривает ДНК как часть поверхности Мебиуса, что объясняет сложности с прочтением и расшифровкой генетического кода. Кроме всего прочего, такая структура дает логичное объяснение биологической смерти – замкнутая на самой себе спираль приводит к самоуничтожению объекта.

По мнению физиков, многие оптические законы основываются на свойствах листа Мебиуса. Так, например, зеркальное отражение - это особый перенос во времени и человек видит перед собой своего зеркального двойника.

Реализация на практике

В различных отраслях промышленности лента Мебиуса применение нашла уже давно. Великий изобретатель Никола Тесла в начале века изобрел резистор Мебиуса, состоящий из двух скрученных на 1800 проводящих поверхностей, который может противостоять потоку электрического тока без создания электромагнитных помех.

На основе исследований поверхности ленты Мебиуса и ее свойств было создано множество устройств и приборов. Ее форму повторяют при создании полосы ленточного конвейера и красящей ленты в печатных устройствах, абразивных ремней для заточки инструментов и автоматической передачи. Это позволяет значительно увеличить срок их службы, так как изнашивание происходит более равномерно.

Не так давно удивительные особенности листа Мебиуса позволили создать пружину, которая, в отличие от обычных, срабатывающих в противоположном направлении, не меняет направление срабатывания. Применяется она в стабилизаторе рулевого привода штурвала, обеспечивая возврат рулевого колеса в исходное положение.

Кроме того, знак лента Мебиуса используется в разнообразных торговых марках и логотипах. Самый известный из них - это международный символ вторичной переработки. Его проставляют на упаковках товаров либо пригодных для последующей переработки, либо сделанных из переработанных ресурсов.

Источник творческого вдохновения

Лента Мебиуса и ее свойства легли в основу творчества многих художников, писателей, скульпторов и кинематографистов. Самый известный художник, использовавший в таких своих работах, как «Лента Мебиуса II (Красные муравьи)», «Всадники» и «Узлы», ленту и ее особенности - Мауриц Корнелис Эшер.

Листы Мебиуса, или, как их еще называют, поверхности минимальной энергии, стали источником вдохновения для математических художников и скульпторов, например, Брента Коллинза или Макса Билла. Самый известный памятник ленте Мебиуса установлен у входа в вашингтонский Музей истории и техники.

Русские художники также не остались в стороне от этой темы и создали свои работы. Скульптуры «Лента Мебиуса» установлены в Москве и Екатеринбурге.

Литература и топология

Необычные свойства поверхностей Мебиуса вдохновили многих писателей на создание фантастических и сюрреалистических произведений. Петля Мебиуса играет важную роль в романе Р. Желязны «Двери в песке» и служит как средство перемещения сквозь пространство и время для главного героя романа «Некроскоп» Б. Ламли

Фигурирует она и в рассказах «Стена темноты» Артура Кларка, «На ленте Мебиуса» М. Клифтона и «Лист Мебиус» А. Дж. Дейча. По мотивам последнего режиссером Густаво Москера был снята фантастическая кинокартина «Мебиус».

Делаем сами, своими руками!

Если вас заинтересовала лента Мебиуса, как сделать ее модель, вам подскажет небольшая инструкция:

1. Для изготовления ее модели потребуются:

Лист обычной бумаги;

Ножницы;

Линейка.

2. Отрезаем полосу от листа бумаги так, чтобы ее ширина была в 5-6 раз меньше длины.

3. Полученную бумажную полоску раскладываем на ровной поверхности. Один конец придерживаем рукой, а другой поворачиваем на 1800 так, чтобы полоса перекрутилась и изнанка стала лицевой стороной.

4. Склеиваем концы перекрученной полосы так, как показано на рисунке.

Лента Мебиуса готова.

5. Возьмите ручку или маркер и посередине ленты начните рисовать дорожку. Если вы сделали все правильно, то вернетесь в ту же точку, откуда начали чертить линию.

Для того чтобы получить наглядное подтверждение тому, что лента Мебиуса - односторонний объект, карандашом или ручкой попробуйте закрасить какую-либо ее сторону. Через некоторое время вы увидите, что закрасили ее полностью.опубликовано

Бударина Светлана

Александр Пославский

Артемий Бабий

Это небольшой очерк о малоизвестных сюрпризах, которые встречаются при изучении геометрии ленты Мёбиуса.

В литературе встречается несколько названий: проективная плоскость, односторонняя поверхность, лента Мёбиуса, петля Мёбиуса, кольцо Мёбиуса. По укоренившейся у меня привычке в дальнейшем я буду называть предмет нашего изучения кольцом Мёбиуса.

Коротко об общеизвестных сюрпризах кольца Мёбиуса . Это необходимо для понимания того, о чем будет рассказано далее.

  • Если разрезать кольцо Мёбиуса вдоль по средней линии, то в итоге получится кольцо с двойным полуоборотом. Такое кольцо называют *Афганской лентой* и оно является уже двусхторонней поверхностью с двумя краями (кромками).
  • Если разрезать кольцо Мёбиуса вдоль края, отступив на 1/3 его ширины, то в итоге получатся два кольца разных размеров: меньшее - кольцо Мёбиуса ( односторонняя поверхность) и большее - *Афганская лента * (двусторонняя поверхность). Эти кольца сцеплены друг с другом.

А сейчас о новых сюрпризах. Они малоизвестны для широкой публики. А самые любознательные читатели могут повторить нижеописанные опыты. Автор очерка не являеется профессиональным математиком-топологом, всё придумал самостоятельно, без посторонней помощи. Поэтому результаты опытов и идеи, высказанные в этом очерке, предлагаются для обсуждения с его автором.

Сюрприз №1

Сначала я попробовал склеить кольцо Мёбиуса не из одной, а из двух полосок бумаги, предварительно уложив их в стопку (Фото 1). Получилось нечто похожее на настоящее кольцо Мёбиуса (Фото2):

Почему “нечто похожее”? Потому что, когда я растянул это кольцо, оказалось, что в результате склейки получилась “ (Фото 3).

И в чем тут сюрприз? А в том, что при растягивании исходного кольца, не нарушалась его целостность. Это значит, что достаточно просто складывается в обратном порядке в исходное кольцо (псевдокольцо) Мёбиуса (Фото 4).

Сейчас время вспомнить, что “афганская лента” получается при разрезании настоящего кольца Мёбиуса по средней линии. Так вот, полученная при разрезании, так же просто складывается в псевдокольцо Мёбиуса . Т.е., разрезав кольцо Мёбиуса (далее - кМ ) по средней линии и получив “афганскую ленту” (а.л.” ) , можно уже полученную а.л. собрать в псевдокольцо Мёбиуса (далее - ПкМ ). Вы можете просто склеить “а.л.” и сложить ее в ПкМ . Проверено на практике.

Сюрприз №2

Этот сюрприз является продолжением сюрприза 1 . Я склеил уже три бумажные полоски по форме кМ , предварительно уложив их в стопку (Фото 5 и 6).

Получился некий “бутерброд” в форме кМ (Фото 7) . Если растянуть этот “бутерброд” , то он разложится на два кольца: меньшее - это кМ и большее - это “а.л.” , сцепленные друг с другом (Фото 8).

Но такой же результат получается при разрезании кМ по 1 / 3 его ширины! Как и в первом случае, эти два кольца возможно собрать в первоначальное состояние “бутерброда” . Сначала “а.л.” укладывается в ПкМ (Фото 9) , а затем кМ помещается в середину ПкМ (Фото 10). Проверено на практике.

Удивительно, но, разрезав уже “бутерброд” по 1 / 3 ширины, можно собрать новый, более сложный “бутерброд” . Теоретически такое деление “бутербродов” и их собирание можно продолжать... ну очень много раз. В итоге получится многослойный “бутерброд” , состоящий из многих слоёв “афганских лент” и одного кольца Мёбиус а , расположенного в середине “бутерброда” .

Для более образного представления многослойного (бутербродного) строения псевдокольца Мёбиуса предлагаю два рисунка из серии “математики шутят”:

На примере “бутерброда” (Фото 7,10) можно легко и зримо понять ещё одно свойство односторонней поверхности (проективной плоскости): нельзя создать две , параллельные друг к другу, однносторонние поверхности (во всяком случае в нашем трёхмерном, эвклидовом, пространстве). Одна из них обязательно получится двухсторонней.

Здесь я сделаю небольшое отступление. В Интернете я встретил описание эксперимента с кольцом Мёбиуса . Выглядел он так: на полимерную плёнку в форме кМ наносился металлический слой. Над полученным образцом проводились различные действия, считая что проводятся опыты над кМ . Строго говоря, опыты проводились над вышеописанным “бутербродом” , где рабочий металлический слой являлся “афганской лентой” , а кольцом Мёбиуса была несущая полимерная плёнка.

Возвращаясь к теме, хочу заметить, что я тоже хотел поэкспериментировать с кМ . Но меня не устраивала несовершенная форма кМ , полученная из прямоугольных полосок. Эта “прямоугольная” конструкция имеет, как минимум, три зоны деформации, которые четко проявляются при уплощении кМ . Поэтому я посчитал, что кМ , собранные на основе S-образных полосок, более технологичны в работе(Фото 11 и 12).

Чтобы получить кМ изS- образной полоски достаточно состыковать концы полоски и склеить их. Причем, в зависимости от того в какую сторону вы будете перегибать полоску, будет получаться лево- или правозакрученный вариант кМ . Так же просто получается и вышеописанный “бутерброд” : делается стопка из 3 S -образных полосок, сводятся их концы и поочередно склеиваются.

Опыты с разрезанием кольца Мёбиуса и собиранием “бутербродов” с этим вариантом более наглядны и сборка получается очень легко.

“Бутерброд” , полученный из трех полосок может послужить моделью для создания конденсатора в форме кМ . Только надо понимать, что в начале необходимо создать кМ из металлической фольги (внутренняя пластина-электрод), а уже на него наносить слои диэлектрика и металлической плёнки (внешняя пластина-электрод). Хотя здесь возможны варианты не с кМ , а с ПкМ и это потребует несколько иного подхода.

Я не знаю, будет ли такая конструкция конденсатора иметь преимущества перед традиционной, но считаю, что она будет интересна для тех, кто занимается торсионными полями. Почему? Это уже тема для дискуссии с автором очерка.

Сюрприз №3

Продолжим. Несмотря на полученный результат, у меня осталась неудовлетворенность несовершенством формы полученного таким способом кМ . Размышляя над этой проблемой, я вспомнил, что кМ относится к торовым поверхностям. Так как у меня с пространственным воображением напряг и мне необходимо всё увидеть глазами и потрогать руками, то я взял кольцо Мёбиуса и оклеил его бумажными кольцами. Получилась вот такая конструкция (Фото 13).

И где здесь обещанный сюрприз? Рассматривая полученный “тор” , я открыл (заостряю - для себя; возможно всё выше- и нижеописанное давно известно читателям этого опуса), что кольцо Мёбиуса не делит внутренний объём тора на две изолированные друг от друга полости. Другими словами: из любой точки, находящейся внутри тора со встроенным в него кМ , можно попасть в любую другую точку внутри, не пересекая плоскость кМ и поверхность тора.

Для наглядности представим себе тор в виде спасательного резинового круга внутри которого находится перегородка в виде кМ . Давление воздуха внутри круга с перегородкой в форме кМ будет распределятся равномерно по всему объёму независимо от того, где будет располагаться ниппель. Кстати, фото 13 очень наглядно моделирует форму магнитного поля вокруг продольной катушки Мёбиуса .

Теоретически принцип построения идеального торового кольца Мёби уса достаточно прост, но практическое исполнение модели торового кМ сопряжено с определёнными техническими трудностями.

Для практического изготовления торовых кМ более всего подходит распечатка на 3-D принтере.

Итак, сюрпризы продолжаются

Сейчас наступило время поговорить о таком замечательном геометрическом теле как ТОР.

Как образуется открытый ТОР ? Правильно, открытый ТОР образуется при вращении торообразующей окружности вокруг оси, находящейся вне этой окружности и имеет вот такой вид (Фото14).

Еще различают пиковый ТОР . Это когда большая ось вращения является касательной к торообразующей окружности. По-простому - бублик без дырки. А также закрытый (осевой) ТОР , когда ось вращения пересекает торообразующую окружность. Хороший пример - округлое яблоко.

Для того, чтобы получить кМ в ТОР е, обозначим в торообразующем круге диаметр (два радиус-вектора). А сейчас заставим торообразующий круг вращаться не только вокруг внешней оси, а одновременно и вокруг внутренней оси ТОР а. За полный оборот вокруг внешней оси круг должен одновременно повернуться на полоборота вокруг внутренней оси. Тогда диаметр (два радиус-вектора) опишет плоскость в виде кМ (Фото 15) .

Но это кМ получено в воображаемом опыте. А как же получить его в реале, не имея в наличии 3-D принтер? Вы можете придумать свой способ, отличный от моего. Я же поступил следующим образом. На поверхности открытого ТОР а (из детской пирамидки) нарисовал траекторию движения радиус-векторов (Фото 16) . Затем взял латунную проволоку, аккуратно обогнул её вокруг ТОР а по этой траектории и получил две половинки края (кромки) торового кМ (Фото 17).

Затем соединил их с помощью двух трубочек, а пространство между ветками полученной петли заполнил отрезками изоленты (Фото 18 и 19).

Кольцо Мёбиуса в ТОР е можно получить и с помощью одного радиус-вектора. При этом он должен одновременно сделать два оборота вокруг внешней оси и полный оборот вокруг внутренней оси. И здесь становятся понятными две вещи: первое - кМ имеет ось симметрии (или среднюю линию) и второе - почему, если разрезать кМ по средней линии, получается кольцо с двойным полуоборотом (*Афг aнская лента* ). Просто представьте себе, что нарисует единичный радиус-вектор при первом обороте вокруг внешней оси, и что при втором.

Внимательный читатель, склеивая кМ и затем разрезая его по средней линии, мог заметить что при этом ножницы совершают один оборот. Если же резать кМ по 1 / 3 ширины, то ножницы совершают уже два оборота.

КМ сохраняет свойства односторонней поверхности и при большем количестве полуоборотов. Главное условие - количество полуоборотов должно быть нечетным.

Такой лист Мёбиуса или кольцо Мёбиуса , как кому нравится, я назвал двухвекторным. Зачем? А затем, что такое кольцо строится двумя радиус-векторами. Ну и что? А то, что...

Сюрприз №4

В торе можна создавать трёх-, четырёх-, ...,N -векторные кольца Мёбиуса . Взгляните на Фото 20. Оно иллюстрирует принцип создания трехвекторного кольца Мёбиуса.

В торообразующей окружности показаны три радиус-вектора - А, В, С . Вращая эту окружность вокруг внешней оси и одновременно закручивая её вокруг внутренней так, чтобы при завершении оборота вектор А состыковался с вектором В (соотвтственно вектор В к С , а С к А ), радиус-векторы опишут (создадут) одностороннюю поверхность в виде трехвекторного (трёхлепесткового) кольца Мёбиуса .

Это универсальный метод получения N-векторных односторонних поверхностей и они будут обладать всеми свойствами обычного кМ.

При таком подходе к построению торовых кМ особое значение приобретает средняя линия (по другому - линия сопряжения). В этом случае линия сопряжения совпадает с внутренней осью тора. Если, к примеру, 3-хвекторный кМ расшить по линии сопряжения, то мы получим вариант “афганской ленты” в тройной петле:

Трёхвекторное кМ , созданное по даной схеме, можно обозначить в виде дроби 1 / 3 , где в знаменателе указывается число векторов, а сама дробь указывает на какой угол закручиваестся каждый вектор при полном обороте.

Я назвал эту дробь индексом км . Например, если я буду говорить о кМ с индексом км = 1 / 4, то это означает, что речь идёт о четырёхвекторном кМ с закрутом в 1 / 4 оборота (умножив на 360 0 , получим результат в градусах) или в 90 0 . Индекс км ,выраженный в градусах - это базовый угол закрута. При этом надо помнить, что индекс км не может принимать значение целого числа .

Приняв во внимание, что кМ может закручиваться по левому или правому винту, я обозначил левый винт знаком ”-“ , а правый винт - знаком “+” . Тогда полная запись индекса км будет выглядеть на примере так: индекс км = + 1 / 4 . Значит речь будет идти о четырехвекторном кМ с закрутом в 1 / 4 оборота(базовый угол закрута - 90 0 ) и правым винтом.

Индекс км становится очень информативным показателем, помогающим достаточно быстро разобраться в огромном семействе многовекторных кМ и их различных сочетаниях.

Я не ставил перед собой задачу описывать и систематизировать всё многообразие семейства торовых кМ и их взаимосочетаний. Остановлюсь только на нескольких осбенностях, которые необходимо учитывать при конструировании девайсов с геометрией кМ .

1. Если индекс км имеет общее кратное для числителя и знаменателя, то при моделировании получается система из нескольких взаимопересекающихся кМ (от 2-х и более). Рассмотрим примеры 6 -тивекторного построения.

Индекс км =+ 2 / 6 , где общее кратное для данной дроби равно 2 . Это означает, что при моделировании получится система из 2-х трехвекторных кМ с базовым углом закрута в 120 0 :

Индекс км =+ 3 / 6 , где общее кратное равно 3 . При моделировании получается система из 3-х двухвекторных кМ с базовым углом в 180 0 :

2. Если индекс км имеет вид 1 / 4 , 1 / 6 , 1 / 8 … 1 / 2 N или 3 / 4 , 5 / 4 , 5 / 6 , 7 / 6 … 2 N±1 / 2N (где N - любое натуральное число, начиная с числа 2 ), то при моделировании получается самопересекающееся кольцо Мёбиуса - от однократного самопересечения до многократного. При этом односторонность такого кМ сохраняется в любом случае. Приведу несколько примеров, подтверждающих данное утверждение:

Существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые (топологически они, однако, неразличимы)[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]] .

Лента Мёбиуса играет важную роль в фантастическом романе Р. Желязны «Двери в песке» .

Лента Мёбиуса и знак бесконечности

Многие считают, что лист Мёбиуса является прародителем символа бесконечности . Однако по имеющимся историческим сведениям символ Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \infty стал использоваться для обозначения бесконечности за два столетия до открытия ленты Мёбиуса (см. Символ бесконечности).

Вариации и обобщения

  • Близкой односторонней поверхностью является бутылка Клейна . Бутылка Клейна может быть получена путём склеивания двух лент Мёбиуса по краям. В обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.
  • Другое похожее множество - проективная плоскость . Если проколоть отверстие в проективной плоскости, тогда то, что останется, будет листом Мёбиуса. С другой стороны, если приклеить диск к ленте Мёбиуса, совмещая их границы, то результатом будет проективная плоскость.

См. также

  • «Лист Мёбиуса» (рассказ)
  • «Лист Мёбиуса» (фильм)

Напишите отзыв о статье "Лента Мёбиуса"

Примечания

Литература

  • Фоменко А. Т., Фукс Д. Б. Курс гомотопической топологии.- М.: Наука, 1989.
  • Гарднер М. Математические чудеса и тайны.- М.: Наука, 1978.

Ссылки

Отрывок, характеризующий Лента Мёбиуса

– У вас перебита грудная клетка, Монсеньёр, я могу помочь вам... если, конечно, вы не побоитесь принять мою «ведьмину» помощь... – как можно ласковее улыбнувшись, сказала я.
При тусклом свете дымившего факела, он внимательно всматривался в моё лицо, пока его взгляд, наконец, не зажёгся пониманием.
– Я знаю, кто вы... Я вас помню! Вы – знаменитая Венецианская Ведьма, с которой его святейшество ни за что не желает расставаться – тихо произнёс Джованни – О вас рассказывают легенды, мадонна! Многие в окружении Папы желают, чтобы вы были мертвы, но он никого не слушает. Зачем вы ему так нужны, Изидора?
Было видно, что разговор даётся ему очень непросто. На каждом вздохе кардинал хрипел и кашлял, не в состоянии нормально вздохнуть.
– Вам очень тяжело. Пожалуйста, позвольте мне помочь вам! – упорно не сдавалась я, зная, что после уже никто больше ему не поможет.
– Это не важно... Думаю, вам лучше будет отсюда побыстрее уйти, мадонна, пока не пришли мои новые тюремщики, или ещё лучше – сам Папа. Не думаю, что ему очень понравилось бы вас здесь застать... – тихо прошептал кардинал, и добавил, – А вы и, правда, необыкновенно красивы, мадонна... Слишком... даже для Папы.
Не слушая его более, я положила руку ему на грудь, и, чувствуя, как в перебитую кость вливается живительное тепло, отрешилась от окружающего, полностью сосредоточившись только на сидевшем передо мной человеке. Через несколько минут, он осторожно, но глубоко вздохнул, и не почувствовав боли, удивлённо улыбнулся.
– Не звали бы вы себя Ведьмой – вас тут же окрестили бы святой, Изидора! Это чудесно! Правда, жаль, что вы поработали напрасно... За мной ведь скоро придут, и, думаю, после мне понадобится лечение посерьёзнее... Вы ведь знакомы с его методами, не так ли?
– Неужели вас будут мучить, как всех остальных, Монсеньёр?.. Вы ведь служите его излюбленной церкви!.. И ваша семья – я уверена, она очень влиятельна! Сможет ли она помочь вам?
– О, думаю убивать меня так просто не собираются... – горько улыбнулся кардинал. – Но ведь ещё до смерти в подвалах Караффы заставляют о ней молить... Не так ли? Уходите, мадонна! Я постараюсь выжить. И буду с благодарностью вспоминать вас...
Я грустно оглядела каменную «келью», вдруг с содроганием вспомнив висевшего на стене, мёртвого Джироламо... Как же долго весь этот ужас будет продолжаться?!.. Неужели я не найду пути уничтожить Караффу, и невинные жизни будут всё также обрываться одна за другой, безнаказанно уничтожаемые им?..
В коридоре послышались чьи-то шаги. Через мгновение дверь со скрипом открылась – на пороге стоял Караффа....
Его глаза сверкали молниями. Видимо, кто-то из старательных слуг немедля доложил, что я пошла в подвалы и теперь «святейшество» явно собиралось, вместо меня, выместить свою злость на несчастном кардинале, беспомощно сидевшем рядом со мной...
– Поздравляю, мадонна! Это место явно пришлось вам по душе, если даже в одиночестве вы возвращаетесь сюда! – Что ж, разрешите доставить вам удовольствие – мы сейчас покажем вам милое представление! – и довольно улыбаясь, уселся в своё обычное большое кресло, собираясь наслаждаться предстоящим «зрелищем»...
У меня от ненависти закружилась голова... Почему?!.. Ну почему этот изверг считал, что ему принадлежит любая человеческая жизнь, с полным правом отнять её, когда ему заблагорассудится?..
– Ваше святейшество, неужели и среди верных служителей вашей любимой церкви попадаются еретики?.. – чуть сдерживая возмущение, с издевкой спросила я.
– О, в данном случае это всего лишь серьёзное непослушание, Изидора. Ересью здесь и не пахнет. Я просто не люблю, когда мои приказы не выполняются. И каждое непослушание нуждается в маленьком уроке на будущее, не так ли, мой дорогой Мороне?.. Думаю, в этом вы со мной согласны?
Мороне!!! Ну, конечно же! Вот почему этот человек показался мне знакомым! Я видела его всего лишь раз на личном приёме Папы. Но кардинал восхитил меня тогда своим истинно природным величием и свободой своего острого ума. И помнится мне, что Караффа тогда казался очень к нему благожелательным и им довольным. Чем же сейчас кардинал сумел так сильно провиниться, что злопамятный Папа смел посадить его в этот жуткий каменный мешок?..
– Ну что ж, мой друг, желаете ли вы признать свою ошибку и вернуться обратно к Императору, чтобы её исправить, или будете гнить здесь, пока не дождётесь моей смерти... которая, как мне стало известно, произойдёт ещё очень нескоро...
Я застыла... Что это означало?! Что изменилось?! Караффа собирался жить долго??? И заявлял об этом очень уверенно! Что же такое могло с ним произойти за время его отсутствия?..
– Не старайтесь, Караффа... Это уже не интересно. Вы не имеете права меня мучить, и держать меня в этом подвале. И вам прекрасно это известно, – очень спокойно ответил Мороне.
В нём всё ещё присутствовало его неизменное достоинство, которое когда-то меня так искренне восхитило. И тут же в моей памяти очень ярко всплыла наша первая и единственная встреча...
Это происходило поздно вечером на одном из странных «ночных» приёмов Караффы. Ожидавших уже почти не оставалось, как вдруг, худой, как жердь, слуга объявил, что на приём пришёл его преосвященство кардинал Мороне, который, к тому же, «очень спешит». Караффа явно обрадовался. А тем временем в зал величественной поступью входил человек... Уж если кто и заслуживал звания высшего иерарха церкви, то это был именно он! Высокий, стройный и подтянутый, великолепный в своём ярком муаровом одеянии, он шёл лёгкой, пружинистой походкой по богатейшим коврам, как по осенним листьям, гордо неся свою красивую голову, будто мир принадлежал только ему. Породистый от корней волос до самых кончиков своих аристократических пальцев, он вызывал к себе невольное уважение, даже ещё не зная его.
– Готовы ли вы, Мороне? – весело воскликнул Караффа. – Я надеюсь, что вы порадуете Нас своими стараниями! Что ж, счастливой дороги вам, кардинал, поприветствуйте от Нас Императора! – и встал, явно собираясь удалиться.
Я не выносила манеру Караффы говорить о себе «мы», но это была привилегия Пап и королей, и оспаривать её, естественно, никто никогда не пытался. Мне сильно перечила такая преувеличенная подчёркнутость своей значимости и исключительности. Но тех, кто такую привилегию имел, это, конечно же, полностью устраивало, не вызывая у них никаких отрицательных чувств. Не обращая внимания на слова Караффы, кардинал с лёгкостью преклонил колено, целуя «перстень грешников», и, уже поднимаясь, очень пристально посмотрел на меня своими яркими васильковыми глазами. В них отразился неожиданный восторг и явное внимание... что Караффе, естественно, совершенно не понравилось.
– Вы пришли сюда видеть меня, а не разбивать сердца прекрасных дам! – недовольно прокаркал Папа. – Счастливого пути, Мороне!
– Я должен переговорить с вами, перед тем, как начну действовать, Ваше святейшество – со всей возможной учтивостью, ничуть не смутившись, произнёс Мороне. – Ошибка с моей стороны может стоить нам очень дорого. Поэтому прошу выделить мне чуточку вашего драгоценного времени, перед тем, как я покину вас.
Меня удивил оттенок колючей иронии, прозвучавший в словах «вашего драгоценного времени»... Он был почти, что неуловимым, но всё же – он явно был! И я тут же решила получше присмотреться к необычному кардиналу, удивляясь его смелости. Ведь обычно ни один человек не решался шутить и уж, тем более – иронизировать с Караффой. Что в данном случае показывало, что Мороне его ничуточки не боялся... А вот, что являлось причиной такого уверенного поведения – я сразу же решила выяснить, так как не пропускала ни малейшего случая узнать кого-то, кто мог бы когда-нибудь оказать мне хоть какую-то помощь в уничтожении «святейшества»... Но в данном случае мне, к сожалению, не повезло... Взяв кардинала под руку и приказав мне дожидаться в зале, Караффа увёл Мороне в свои покои, не разрешив мне даже простится с ним. А у меня почему-то осталось чувство странного сожаления, как будто я упустила какой-то важный, пусть даже и очень маленький шанс получить чужую поддержку...
Обычно Папа не разрешал мне находиться в его приёмной, когда там были люди. Но иногда, по той или иной причине, он вдруг «повелевал» следовать за ним, и отказать ему в этом, навлекая на себя ещё большие неприятности, было с моей стороны просто неразумно, да и не было на то никакого серьёзного повода. Потому я всегда шла, зная, что, как обычно, Папа будет с каким-то непонятным интересом наблюдать мою реакцию на тех или иных приглашённых. Мне было совершенно безразлично, зачем ему было нужно подобное «развлечение». Но такие «встречи» позволяли мне чуточку развеяться, и уже ради этого стоило не возражать против его странноватых приглашений.
Так и не встретившись никогда более с заинтересовавшим меня кардиналом Мороне, я очень скоро о нём забыла. И вот теперь он сидел на полу прямо передо мной, весь окровавленный, но всё такой же гордый, и опять заставлял точно также восхищаться его умением сохранять своё достоинство, оставаясь самим собой в любых, даже самых неприятных жизненных обстоятельствах.
– Вы правы, Мороне, у меня нет серьёзного повода вас мучить... – и тут же улыбнулся. – Но разве он Нам нужен?.. Да и притом, не все мучения оставляют видимые следы, не так ли?
Я не желала оставаться!.. Не хотела смотреть, как это чудовищное «святейшество» будет практиковать свои «таланты» на совершенно невиновном человеке. Но я также прекрасно знала, что Караффа меня не отпустит, пока не насладится одновременно и моим мучением. Поэтому, собравшись, насколько позволяли мне мои расшатанные нервы, я приготовилась смотреть...
Могучий палач легко поднял кардинала, привязывая к его ступням тяжёлый камень. Вначале я не могла понять, что означала такая пытка, но продолжение, к сожалению, не заставило себя ждать... Палач потянул рычаг, и тело кардинала начало подниматься... Послышался хруст – это выходили из мест его суставы и позвонки. Мои волосы встали дыбом! Но кардинал молчал.
– Кричите, Мороне! Доставьте мне удовольствие! Возможно, тогда я отпущу вас раньше. Ну, что же вы?.. Я вам приказываю. Кричите!!!
Папа бесился... Он ненавидел, когда люди не ломались. Ненавидел, если его не боялись... И поэтому для «непослушных» пытки продолжались намного упорнее и злей.
Мороне стал белым, как смерть. По его тонкому лицу катились крупные капли пота и, срываясь, капали на землю. Его выдержка поражала, но я понимала, что долго так продолжаться не сможет – каждое живое тело имело предел... Хотелось помочь ему, попробовать как-то обезболить. И тут мне неожиданно пришла в голову забавная мысль, которую я сразу же попыталась осуществить – камень, висевший на ногах кардинала, стал невесомым!.. Караффа, к счастью, этого не заметил. А Мороне удивлённо поднял глаза, и тут же их поспешно закрыл, чтобы не выдать. Но я успела увидеть – он понял. И продолжала «колдовать» дальше, чтобы как можно больше облегчить его боль.

Давайте поэкспериментируем: вырежем из бумаги полоску, склеим концы ленты, но не так, как обычно, а с поворотом на 180 градусов. У нас получилась лента Мёбиуса.

Немецкий астроном и математик Август Фердинанд Мёбиус взял однажды бумажную ленту, повернул один её конец на пол-оборота (то есть на 180 градусов), а потом склеил его с другим концом. То ли от скуки он это сделал, то ли ради научного интереса - теперь уже неизвестно. Зато доподлинно известно, что именно так и появилась ещё в прошлом веке знаменитая лента Мёбиуса.

Свойства ленты Мёбиуса

Чем же она знаменита? А тем, что поверхность ленты Мёбиуса имеет только одну сторону. Это легко проверить. Возьмите карандаш и начните закрашивать ленту в каком-нибудь направлении. Вскоре вы вернётесь в то место, откуда начали. А теперь поглядите внимательно: закрашенной оказалась вся лента целиком! А ведь вы её не переворачивали, чтобы закрасить с другой стороны. Да и не смогли перевернуть, даже если бы очень захотели. Потому как поверхность ленты Мёбиуса - односторонняя . Такое вот у нее любопытное свойство наблюдается.

Поработаем ножницами ещё раз: проткнём эту ленту и аккуратно разрежем её вдоль - точно посередине. «Ну вот, - подумаете вы, - сейчас получатся два отдельных кольца…».

Но что это? Вместо двух колец, получается одно! Причём оно больше и тоньше первоначального, и перекручено дважды. «Такого не бывает», - скажете вы. Бывает.

Как Вы думаете, что станет с этой фигурой, если её снова разрезать? Может быть, снова выйдет одна целая, но перекрученная полоска бумаги? Нет. На этот раз получатся уже два сцепленных кольца.

Вот такие интересные метаморфозы таит в себе лента Мебиуса. Вы можете показать друзьям эти явления, выдавая их за фокусы, тогда как на самом деле вы просто продемонстрируете им математические законы.

Простая полоска бумаги, но перекрученная всего лишь раз и склеенная затем в кольцо, сразу же превращается в загадочную ленту Мёбиуса и приобретает удивительные свойства. Такие свойства поверхностей и пространств изучает специальный раздел математики - топология .
Наука эта настолько сложная, что ее в школе не проходят. Только в институтах (и то не во всех!). Но кто знает, вдруг вы станете со временем знаменитым топологом и совершите не одно замечательное открытие. И быть может, какую-нибудь замысловатую поверхность назовут вашим именем!

Лента Мёбиуса в архитектуре

А где в реальной жизни можно увидеть ленту Мёбиуса? Многие архитекторы в своих проектах пытаются использовать загадочную ленту. Так бельгийский архитектор Винсент Каллебо для парка в Тайване разработал новое здание, которое напоминает ленту Мебиуса.

Сооружение имеет форму ласточкиного гнезда и начинается с треугольника, а затем закручивается в эллипс. Внутри строения можно полюбоваться растениями, предметами искусства или просто совершить прогулку.

Видео демонстрирует загадки ленты Мёбиуса

Вам также будет интересно:

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань
Одним из любимейших сказочных героев является кот в сапогах. И взрослые, и дети обожают...
Как определить пол ребенка?
Будущие мамочки до того, как УЗИ будет иметь возможность рассказать, кто там расположился в...
Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....