Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Цветок для шторы своими руками

Как отстирать засохшую краску с одежды в домашних условиях Чем очистить вещь от краски

Как определить пол ребенка?

Маска для лица с яйцом Маска из куриного яйца

Энергоресурсы - энергия воды. Гидроэнергетика. Основные принципы использования энергии воды. Гидроэлектростанции. Энергия волн. Энергия приливов. Преобразование тепловой энергии океана в механическую

Вода – источник жизни на земле. Это одно из самых уникальных и удивительных явлений на нашей планете, обладающее множеством уникальных свойств, использование которых может быть очень выгодно и полезно для человека. Энергия воды, ровно как и энергия солнца или воздуха, является возобновляемым источником энергии, так необходимым в сложившихся условиях. Все прекрасно понимают, что внутренние Земные ресурсы не безграничны и рано или поздно они закончатся (причем, учитывая постоянно растущий «аппетит» человечества, это произойдет скорей рано, чем поздно). Поэтому проблема поиска альтернативных источников энергии так важна сегодня, а вода предлагает нам одно из решений этой проблемы.
Итак, энергия воды, пожалуй, одна из первых энергий, которую люди научились использовать в своих целях. Вспомнить хотя бы первые речные мельницы. Принцип их работы прост и в то же время гениален: движущийся поток воды вращает колесо, преобразуя кинетическую энергию воды в механическую работу колеса. По сути все современные гидроэлектростанции работают именно так же. С одним важным дополнением: далее механическая энергия преобразуется в электрическую.

Энергию воды грубо можно разделить на три типа по ее виду, в котором она преобразовывается:
1. Энергия приливов/отливов. Вообще само явление отлива очень интересно и долгое время оно никак не могло быть объяснено. Большие массивные (и разумеется близкие к Земле) космические объекты, такие как Луна или Солнце, действием своей гравитации приводят к неравномерному распределению воды в океане, создавая «горбы» из воды. Из-за вращения земли начинается движение этих «горбов» и их перемещение к берегам. Но из-за того же вращения Земли, положение океана относительно Луны изменяется, уменьшая тем самым действие гравитации.
Во время прилива заполняются специальные резервуары, располагающиеся на береговой линии. Резервуары образуются благодаря дамбам. Во время отлива вода начинает свое обратное движение, которое и используется для вращения турбин и преобразования энергии. Важно, чтобы разница высот во время прилива и отлива была как можно больше, иначе подобная станция просто не сможет себя оправдывать. Поэтому приливные электростанции создаются, как правило, в узких местах, где высота приливов достигает хотя бы 10 метров. Например приливная станция во Франции в устье реки Ранее.
Но такие станции имеют и свои минусы: создание дамбы приводит к увеличению амплитуды приливов со стороны океана, а это влечет за собой затопление суши соленой водой. Как следствие – изменение флоры и фауны биологической системы, причем не в самую лучшую сторону.
2. Энергия морских волн. Несмотря на то, что природа этой энергии весьма схожа с вышеописанной, ее все же принято выделять в отдельную ветвь. Данный вид энергии обладает довольно высокой удельной мощностью (приблизительная мощность волнения океанов достигает 15 кВт/м). Если высота волны будет около двух метров, то это значение может увеличиться до 80 кВт/м. Разумеется, это идеализированные данные, потому что перевести всю энергию волнения в электрическую не удастся, но все же коэффициент преобразования довольно высок – 85%.
На сегодняшний день использование энергии морских волн не особо распространено из-за ряда сложностей, возникающих при создании установок. Пока эта сфера находится только на стадии экспериментальных исследований.
3. Гидроэлектростанции. А этот вид энергии стал доступным для человека благодаря совместной «работе» трех стихий: воды, воздуха и, конечно же, солнца. Солнце испаряет с поверхности озер, морей и океанов воду, образуя облака. Ветер перемещает газообразную воду к возвышенным областям, где она конденсируется и, выпадая в виде осадков, начинает стекать обратно к своим первоисточникам. На пути этих потоков ставятся гидроэлектростанции, которые перехватывают энергию падающей воды и преобразуют ее в электрическую. Мощность, вырабатываемая станцией, зависит от высоты падения воды, поэтому на ГЭС стали создаваться дамбы. Они так же позволяют регулировать величину потока. Разумеется создание такого огромного сооружения стоит очень дорого, но ГЭС полностью себя окупает благодаря неисчерпаемости используемого ресурса и свободного доступа к нему.
У данного типа энергии, по аналогии с остальными, имеются как плюсы, так и минусы. Так же как в случае использования энергии приливов, создание ГЭС приводит к затоплению большой площади и нанесению непоправимого ущерба местной фауне. Но даже с учетом этого обстоятельства можно говорить о высокой экологичности ГЭС: они наносят только локальный ущерб, не загрязняя атмосферу Земли. В попытках уменьшить ущерб, наносимый станциями разрабатываются все более новые методы их работы, постоянно совершенствуется конструкция самих турбин. Одним из предложенных методов стало «накачивание» аккумуляторов. Вода, прошедшая через турбины не утекает дальше, а накапливается в больших резервуарах. Когда нагрузка на ГЭС становится минимальной, за счет энергии атомной или тепловой станции сохраненная вода перекачивается обратно вверх и все повторяется. Этот метод выигрывает как по экологическим, так и по экономическим показателям.
Еще одну очень интересную область придумали эксперты Комиссии по атомной энергетике в Гренобле, Франция. Они предлагают использовать энергию падающего дождя! Каждая падающая капля обладает своим воздействием. Попадая на пьезокерамический элемент, она воздействует на него физически, что приводит к возникновению электрического потенциала. Далее электрический заряд видоизменяется (так же как в микрофонах электрических сигнал преобразуется в колебания). Благодаря многообразию своих форм, вода обладает поистине громадным энергетическим потенциалом.
На сегодняшний день гидроэнергетика уже весьма развита и составляет 25% от мирового производства электроэнергии, а учитывая темпы ее развития можно смело говорить, что она является весьма перспективным направлением.

Транскрипт

1 ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ ВОДЫ

2 1. Энергия рек Устройства, в которых энергия воды используется для совершения работы, принято называть водяными (или гидравлическими.) двигателями. Простейшие и самые древние из них водяные колеса. Различают колеса сверхним, средним и нижним подводом воды. В современной гидроэлектростанции масса воды с большой скоростью устремляется на лопатки турбин. Вода из-за плотины течет через защитную сетку и регулируемый затвор по стальному трубопроводу к турбине, над которой установлен генератор. Механическая энергия воды посредством турбины передается генераторам и в них преобразуется в электрическую. После совершения работы вода стекает в реку через постепенно расширяющийся туннель, теряя при этом свою скорость.


3 Классификация ГЭС Гидроэлектростанции классифицируются по мощности: мелкие (с установленной электрической мощностью до 0,2 МВт) малые (до 2 МВт), средние (до 20 МВт) крупные (свыше 20 МВт) Гидроэлектростанции классифицируются по напору: низконапорные ГЭС (напор до 10 м) среднего напора (до 100 м) высоконапорные (свыше 100 м). В редких случаях плотины высоконапорных ГЭС достигают высоты 240 м. Такие плотины сосредоточивают перед турбинами водную энергию, накапливая воду и поднимая ее уровень

4 Особенности ГЭС Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии Возобновляемый источник энергии Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций Строительство ГЭС обычно более капиталоёмкое Часто эффективные ГЭС более удалены от потребителей Водохранилища часто занимают значительные территории Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства. Мощность современных ГЭС, спроектированных на высоком инженерном уровне, превышает 100 МВт, а К.П.Д. составляет 95% (водяные колеса имеют К.П.Д %). Такая мощность достигается при довольно малых скоростях вращения ротора (порядка 100 об/мин), поэтому современные гидротурбины поражают своими размерами. Например, рабочее колесо турбины Волжской ГЭС им. В. И. Ленина имеет высоту около 10 м ивесит 420 т


5 Наименование Саяно- Шушенская ГЭС Красноярская ГЭС Крупнейшие гидроэлектростанции России Мощность, ГВт 6,40 6,00 Среднегодовая выработка, млрд квт ч 23,50 20,40 Собственник ОАО РусГидро ОАО «Красноярская ГЭС» География р. Енисей, г. Саяногорск р. Енисей, г. Дивногорск Братская ГЭС 4,50 22,60 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Братск Усть-Илимская ГЭС 4,32 21,70 ОАО Иркутскэнерго,РФФИ р. Ангара, г. Усть- Илимск Богучанская ГЭС* 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара, г. Кодинск Волжская ГЭС 2,54 12,30 ОАО РусГидро р. Волга, г. Волжский Жигулёвская ГЭС 2,30 10,50 ОАО РусГидро р. Волга, г. Жигулевск Бурейская ГЭС* 2,00 7,10 ОАО РусГидро р. Бурея, пос. Талакан Чебоксарская ГЭС 1,40** 3,31** ОАО РусГидро р. Волга, г. Новочебоксарск Саратовская ГЭС 1,36 5,35 ОАО РусГидро р. Волга, г. Балаково Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея, г. Зея Нижнекамская ГЭС 1,25** 2,67** ОАО «Генерирующая компания», ОАО «Татэнерго» р. Кама, г. Набережные Челны Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья, пос. Богородское Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама, г. Чайковский Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак


6 Крупнейшие ГЭС в мире Наименова ние Мощность ГВт Среднегодовая выработка, млрд квт ч География Санься 22,40 100,00 р. Янцзы, г. Сандоупин, Китай Итайпу 14,00 100,00 р. Парана, г. Фос-ду-Игуасу, Бразилия/Парагвай Гури 10,30 40,00 р. Карони, Венесуэла Тукуруи 8,30 21,00 р. Токантин, Бразилия




9 2. Энергетические ресурсы океана 2.1. Тепловая энергия океана Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км 2) занимают моря и океаны: Тихий океан 180 млн. км 2 Атлантический 93 млн. км 2 Индийский 75 млн. км 2 Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка Дж. Кинетическая энергия океанских течений оценивается величиной порядка Дж. Однако, пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной

10 В августе 1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини- ОТЕС. Пробная эксплуатация установки в течение трех с половиной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если но считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 квт, максимальная 53 квт; 12 квт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точнее на зарядку аккумуляторов. Остальная вырабатываемая мощность расходовалась на собственные нужды установки. В их число входят затраты энергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии. Три насоса потребовались из следующего расчета: один для подачи теплой виды из океана, второй для подкачки холодной воды с глубины около 700 м, третий для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочий жидкости применяется аммиак. Установка мини-отес смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой. Впервые в истории техники установка мини-отес смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-отес, позволил быстро построить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобного типа. Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования анергии. Верхний конец трубопровода холодной воды расположится в океане на глубине м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование. Масса всего сооружения превышает 300 тыс.т. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. И никакого судна, кроме, конечно, обычных судов, необходимых для обслуживания системы и для связи с берегом.


12 К настоящему времени имеются ряд патентных разработок и экспериментальных установок, которые могут стать основой для развития новой отрасли гидроэнергетики, использующей тепловую энергию, аккумулированную океаном. Освоение тепловой энергии океана по программе Ocean Thermal Energy Conversion (OTEC) входит в национальные программы таких стран как США, Франция, Япония, Швеция, Индия. К сожалению, такая огромная страна как Россия в этом списке отсутствует. Впервые идею использования тепловой энергии океана предложил французский ученый Д Арсонваль, и хотя прошло уже много времени, эта идея так и находится на уровне экспериментальных работ. Принципиальное техническое решение о применении тепловых машин в освоении тепловой энергии океана принято давно и это никаких сомнений не вызывает. В данном случае тепловая машина работает в основном по циклу Ренкина (замкнутый цикл), у которого в качестве рабочего тела применяется легкокипящая жидкость. Науке известны три типа установок: с открытым циклом сзакрытымциклом гибридный


13 Основная из них, установка с открытым циклом, разрабатывалась более ста лет назад. Все три существующих типа предусматривают подъем холодной воды к поверхности океана. Но поскольку для работы в условиях океана интерес могут представлять только крупные тепловые гидроэлектростанции мощностью от 1000 МВт, то количество воды, необходимой для работы таких станций, должно измеряться десятками и сотнями миллионов тонн в час. Такое количество воды при подъеме на поверхность требует много энергии и при этом способно выделить в атмосферу большое количество растворенных на глубине вредных газов. Резюмируя, можно выделить главные недостатки существующих установок: 1. Большие энергетические потери на транспортировку сырья с глубины, позволяющие установкам работать при разности температур не ниже 20 0 С. 2. Сложность подачи сырья, ограничивающая объемы производства. 3. Необходимость иметь стартовые энергетические мощности. 4. Проблемы, связанные с выделением углекислого газа растворенного в глубинных слоях океана. Именно в силу этих недостатков проведенные экспериментальные работы по освоению тепловой энергии океана привели лишь к весьма скромным результатам на маломощных установках, работающих с положительным выходом энергии при температурном градиенте не ниже 20 0 С.


14 Результаты работ, проводимых в прошлом веке по теме OTEC (Ocean Thermal Energy Conversion) были не слишком успешными. КПД тепловой энергии тропического океана, как источника энергии, составляет 6-8%.

15 Основные принципиальные схемы ОТЭС Для преобразования энергии перепада температур в океане в настоящее время предложено несколько типов устройств. наибольший объем исследований ведется по разработке систем, действующих по двухконтурной схеме с промежуточным рабочим телом на основе термодинамического цикла Ренкина устройств, выполненных по одноконтурной схеме и работающих непосредственно на морской воде(открытый цикл Клода) к основным на сегодняшний день (имеются в виду промышленно разрабатываемые установки) можно причислить и устройства, работающие по одноконтурной схеме, но нагруженные на обычную гидравлическую турбину (цикл Фетковича). далее следует целый ряд модификаций схем тепловых машин, использующих кроме того и другие перепады температур (воздух-вода, точнее атмосфера-гидросфера, гидросфера-литосфера), а также системы для непосредственного преобразования тепловой энергии в электрическую.


16 Схема установки, работающей по двухконтурной схеме с промежуточным рабочим телом на основе термодинамического цикла Ренкина 1 насос теплой воды; 2 испаритель; 3 насос осушителя парообразного рабочего тела; 4 осушитель; 5 турбина с электрогенератором; 6 конденсатор; 7 насос для забора холодной воды; 8 насос для подачи рабочего тела


17 Термодинамический цикл такой тепловой машины (цикл Ренкина) Полезная работа, совершаемая паром в турбине, определяется ветвью 1-2, на участке 2-3 происходит конденсация, затем насосом рабочее тело подается в испаритель 3-4, где нагревается (ветвь 4-5) и испаряется (ветвь 5-1). Таким образом, подвод рабочего тела к системе тепла осуществляется на ветви, а отвод на ветви 2-3. Дополнительную работу приходится затрачивать на закачку конденсата в испаритель (3-4) и на подачу воды в нагреватель и холодильник


18 Максимальный теоретический КПД такой системы определяется разностью температур воды, подаваемой в нагреватель и холодильник, как КПД эквивалентного цикла Карно η к = Т Т Т Для перепадов температур между поверхностными и глубинными слоями воды в пределах от 15 до 26 С он соответственно изменяется в диапазоне от 5 до 9%. Реальный КПД, как правило, существенно ниже. Это связано с конструктивными ограничениями, не позволяющими в реальной установке довести температуру паров и конденсата до температуры теплых и холодных вод соответственно. Можно подсчитать, что при теоретическом КПД, равном 7,3%, на турбине получаем величину примерно в 2 раза меньшую 3,6%. Причем она не учитывает еще потерь на собственные нужды станции, которые сведут КПД до величины, меньшей 2,5%. Это, в свою очередь, означает, что для получения 1 МВт «полезной» мощности через теплообменники такой станции должно пройти не менее 40 МВт тепловой мощности. Именно поэтому ОТЭС требуют огромных расходов теплой и холодной воды, измеряемых в тысячах кубометроввсекунду. 01


19 Для того чтобы представить себе, что же такое реальная промышленная ОТЭС, достаточно указать такие ориентировочные цифры: станция мощностью 40 МВт (плавучая) должна иметь водоизмещение примерно 70 тыс.т, диаметр трубопровода холодной воды 10 м и рабочую поверхность теплообменника около 45 тыс.м 2. Соответственно, для станции с полезной мощностью 500 МВт водоизмещение будет составлять примерно 500 тыс.т (водоизмещение современного супертанкера). Трубопровод должен иметь диаметр не менее 30 м, площадь теплообменника будет около м 2.

20 Схема ОТЭС, работающей по открытому циклу (цикл Клода): 1 насос теплой воды; 2 деаэратор; 3 вакуумный насос; 4 испаритель; 5 турбина с электрогенератором; 6 конденсатор; 7 насос для подъема холодной воды В качестве рабочего тела здесь использована морская вода, подаваемая в испаритель через деаэратор, освобождающий воду от растворенных в ней газов. Предварительно из полостей испарителя и конденсатора удаляется воздух, так что давление над поверхностью жидкости определяется только давлением насыщенных паров, которое сильно зависит от температуры.


21 При характерных для ОТЭС температурах этот перепад составляет примерно 1,6 кпа (при замкнутом цикле на аммиаке около 500 кпа), под действием этого перепада пары воды приводят в движение турбину, попадают в конденсатор, где и превращаются в жидкость. Основное отличие цикла как раз и состоит в малости перепада давлений, что требует использования соответствующих гигантских турбин диаметром в несколько десятков метров. Это, пожалуй, основной технический недостаток систем открытого цикла. Основное же их достоинство отсутствие гигантских нетехнологичных теплообменников. Кроме того, при работе систем открытого цикла могут быть получены большие количества пресной воды, что немаловажно в жарком поясе планеты.

22 Обобщенная схема двухфазной термоэнергетической установки (схема Бека): 1 парообразователь; 2 накопитель; 3 гидравлическая турбина; 4 конденсатор В основе способа преобразования энергии подобие существующего в природе круговорота воды под действием солнечной радиации. Подъем воды на требуемый уровень осуществляется путем либо создания в столбе кавитационных пузырьков, либо вспениванием (эффекты аналогичные подъему жидкости с помощью эрлифта), либо созданием разрежения над ее поверхностью за счет образования тумана. Гидротурбина при этом может быть установлена непосредственно в трубопроводе теплой воды, забираемой с поверхности.

23 Вариант схемы парожидкостного устройства 1 теплая вода; 2 парожидкостная смесь (туман); 3 холодная вода. Парожидкостная смесь, с удельным объемом от 200 до 3000 см 3 /г, содержащая капельки воды размером около 200 мкм, поднимаясь в поле отрицательного градиента температур, выполняет работу по прокачиванию теплой поверхностной воды через турбину. Общая проблема при реализации подобных устройств в промышленных масштабах (лабораторные образцы уже осуществлены) возможная нестабильность тумана, пены, кавитационных пузырьков

24 Преобразователь Фетковича 1 гидравлическая турбина; 2 клапан турбины; 3, 4 клапаны испарителей теплой и холодной воды; 5 рабочая камера; 6 обратный клапан рабочей камеры Это система периодического действия, основанная на поочередном подключении внутренней полости рабочей камеры к блокам испарения теплой и холодной воды, в результате чего в первой создается разрежение, под действием которого и засасывается забортная вода. После подъема на максимальный уровень вода сбрасывается через турбину.

25 Использование перепада температур океан-атмосфера Идея использования перепада температур между холодным воздухом и незамерзающей (теплой) водой подо льдом Арктики впервые была высказана во Франции А. Баржо, развившим идею Д Арсонваля по преобразованию тепловой энергии, запасенной в океане. В нашей стране с ее протяженным арктическим шельфом работы в этой области всегда вызывали интерес. Достаточно указать на проекты Г. Покровского (гг.), на работы, выполненные под руководством В.И. Марочека во Владивостоке, на проведенные там же исследования А.К. Ильина и В.В. Тикменова. Особенность работы таких станций так называемый «треугольный» цикл: нагрев и испарение рабочего тела в результате политропного процесса, адиабатное расширение через турбину, изотермическое сжатие при подаче в испаритель с одновременным отводом избыточного тепла в холодильнике. КПД такого цикла, как показано в одной из работ А. К. Ильина, ниже термического КПД цикла Карно примерно в 2 раза. Удельная мощность, получаемая с 1 м 2 площади океана при разности температур воды и воздуха, равной 10 С составляет примерно 18 квт/м 2 20 С 60 квт/м 2, 30 С 125 квт/м 2

26 Схема арктической ОТЭС на перепаде вода-воздух 1 испаритель основного контура; 2 турбина с электрогенератором; 3 конденсатор; 4 теплообменник контура охлаждения промежуточного рабочего тела; 5 насос для подачи хладагента; 6 насос для подачи рабочего тела; 7 насос для подачи морской воды; 8 водозаборник; 9 патрубок сброса отработанной воды

27 Прямое преобразование тепловой энергии Схема ОТЭС на термоэлектрических преобразователях. В основе ее действия явление Зеебека, заключающееся в возникновении разности потенциалов в электрической цепи, составленной из материалов с различной концентрацией носителей заряда, места соединений которых нагреты до разных температур. 1 кожух; 2 термоэлектрический генератор; 3 полупроводниковые элементы с p-n проводимостью; 4 поверхностное изолирующее покрытие; 5 изолятор; 6 соединительные шины Схема ОТЭС с прямым преобразованием тепловой энергии в электрическую: а устройство отдельного блока; б, в варианты устройства термоэлектрического преобразователя

28 2.2. Энергия приливов и отливов Ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луныдействуетназемныеподывдвоесильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой (так называемая сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив (сизигийный прилив, или большая вода). Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (квадратура), наступает слабый прилив (квадратурный, или малая вода). Сильныйислабыйприливы чередуются через семь дней. Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер. Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой см.

29 Максимально возможная мощность в одном цикле прилив отлив, т. е. от одного прилива до другого, выражается уравнением где W = ρgsr 2, ρ плотность воды g ускорение силы тяжести S площадь приливного бассейна R разность уровней при приливе Как видно из (формулы, для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые «бассейны». Мощность электростанций в некоторых местах могла бы составить 2 20 МВт.

30 Первая морская приливная электростанция мощностью 635 квт была построена в 1913 г. в бухте Ди около Ливерпуля. В 1935 г. приливную электростанцию начали строить в США. Американцы перегородили часть залива Пассамакводи на восточном побережье, истратили 7 млн. долл., но работы пришлось прекратить из-за неудобного для строительства, слишком глубокого и мягкого морского дна, а такжеиз-за того, что построенная неподалеку крупная тепловая электростанция дала более дешевую энергию. Аргентинские специалисты предлагали использовать очень высокую приливную волну в Магеллановом проливе, по правительство не утвердило дорогостоящий проект. С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс.квт с годовой отдачей 540 тыс.квт ч. Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн.квт в Мезенском заливе на Баренцевом море.

31 Кислогубская ПЭС Мощность станции -1,7 МВт (первоначально 0,4 МВт). Станция установлена в узкой части губы Кислая, высота приливов в которой достигает 5 метров. Конструктивно станция состоит из двух частей - старой, постройки 1968 года, и новой, постройки 2006 года. Новая часть присоединена к одному из двух водоводов старой части. В здании ПЭС размещено два ортогональных гидроагрегата - один мощностью 0,2 МВт (диаметр рабочего колеса 2,5 м, находится в старом здании) и один ОГА-5,0м мощностью 1,5 МВт (диаметр рабочего колеса 5 м, находится в новом здании). Гидротурбины изготовлены ФГУП «ПО Севмаш»

32 Мезенская ПЭС Мезенская ПЭС проектируется на побережье Белого моря в Мезенском заливе, где сосредоточены основные запасы приливной энергии Европейской части России и величина прилива достигает 10,3 м. Было рассмотрено 8 вариантов расположения ПЭС. За базисный был принят наиболее выдвинутый в море створ, позволяющий разместить здание ПЭС и водосливную плотину на естественных глубинах. Площадь отсекаемого будущей плотиной бассейна кв. км. Возможная мощность ПЭС была определена в 19,7 млн. квт с выработкой 49,1 млрд. квт-ч электроэнергии. Расчеты энергоэкономической эффективности ПЭС в первой четверти нового века определили ее мощность в 11,4 млн. квт с выработкой 38,9 млрд. квт-ч при3400 часах годового использования. Энергию планируется использовать на внутреннем и внешнем рынках Северо-западного региона, в объединениях энергосистем «ЕЭС России» и Европейского сообщества.

33 Приливная электростанция (ПЭС) - электростанция, преобразующая энергию морских приливов в электрическую. ПЭС использует перепад уровней «полной» и «малой» воды во время прилива и отлива. Перекрыв плотиной, залив или устье впадающей с море (океан) реки (образовав водоём, называют бассейном ПЭС), можно при достаточно высокой амплитуде прилива (> 4 м) создать напор, достаточный для вращения гидротурбин и соединённых с ними гидрогенераторов, размещенных в теле плотины. При одном бассейне и правильном полусуточном цикле приливов ПЭС может вырабатывать электроэнергию непрерывно в течение 4-5 ч с перерывами соответственно 2-1 ч четырежды за сутки (такая ПЭС называется однобассейновой двустороннего действия). Для устранения неравномерности выработки электроэнергии бассейн ПЭС можно разделить плотиной на два или три меньших бассейна, в одномиз которых поддерживается уровень «малой», а вдругом-«полной» воды; третий бассейн - резервный; гидроагрегаты устанавливаются в теле разделительной плотины. Но и эта мера полностью не исключает пульсации энергии, обусловленной цикличностью приливов в течение полумесячного периода.

34 Соотношения, позволяющие оценить мощность приливных течений, подобны тем, которые используются в ветроэнергетике, при этом следует иметь в виду, что плотность воды во много раз выше плотности воздуха, а скорости течения воды сравнительно низки. Плотность мощности потока воды, Вт/м 2 V ρ 2 В случае приливного или речного течения при скорости, например, 3 м/с 3 3 q = 1000 = Вт /м 2 2 Только часть полной энергии потока может быть преобразована в полезную. Как и для ветра, этозначениенеможетпревышать60%. На практике оказывается, что его можно довести максимум до 40%. q = 3 Капитальные затраты на создание подобных устройств в расчете на 1 квт установленной мощности достаточно высоки, поэтомуихстроительство целесообразно лишь в отдаленных районах с высокими скоростями приливных течений, где любые альтернативные источники энергии еще более дороги

35 Схема извлечения приливной энергии Схема электростанции на приливном течении

36 Экологическая безопасность ПЭС: наплавной способ строительства дает возможность не возводить в створах ПЭС временные крупные стройбазы, не сооружать перемычки, что способствует сохранению окружающей среды в районе ПЭС исключен выброс загрязняющих веществ в атмосферу не образуются радиоактивные и тепловые отходы не требуется добыча, транспортировка, переработка, сжигание и захоронение топлива, затопление территорий плотины ПЭС биологически проницаемы, на них не стоят задачи создавать напор на продолжительный срок, бороться с фильтрацией пропуск рыбы через ПЭС происходит практически беспрепятственно, при холостом режиме работы турбинных агрегатов при открытых затворах обеспечивается пропуск через плотину рыб, совершающих нерестовые и кормовые миграции натурные испытания (исследования Полярного института рыбного хозяйства и океанологии) на Кислогубской ПЭС не обнаружили погибшей рыбы или ее повреждений основная кормовая база рыбного стада - планктон: на ПЭС гибнет 5-10% планктона, а нагэс % ледовый режим в бассейне ПЭС смягчается, т.к. формирование сплошного ледяного покрова маловероятно

37 2.3. Энергия волн Принцип действия волновых электростанций 1. Использование вертикальных подъемов и спадов волны для при вода в действие водяных или воздушных турбин, соединенных с электрогенераторами. 2. Использование горизонтального перемещения волн с помощью устройств флюгерного типа для получения через специальную передачу вращательного движения. 3. Концентрация волн в сходящемся канале, в котором их кинетическая энергия поддерживала бы напор воды, достаточный для привода в действие турбины. Одно из устройств первой группы представляет собой вертикальную трубу, погруженную нижним открытым концом в достаточно спокойные слои моря и закрытую сверху. Труба закреплена на поплавке. В верхней ее части, в "волновой" камере, вода имеет свободную поверхность. При подъеме волны уровень свободной поверхности в "волновой" камере поднимается и сжимает воздух, который приводит в действие воздушную турбину, соединенную с электрогенератором. При спаде волны через атмосферный клапан в "волновую" камеру засасывается новая порция воздуха. И далее процесс повторяется. Период колебаний уровня воды -5-6 с.

38 Преобразователи, использующие энергию колеблющегося водяного столба При набегании волны на частично погруженную полость, открытую под водой, столб жидкости в полости колеблется, вызывая изменения давления в газе над жидкостью. Полость может быть связана с атмосферой через турбину. Поток может регулироваться так, чтобы проходить через турбину в одном направлении, или может быть использована турбина Уэлса. Уже известны по крайней мере два примера коммерческого использования устройств на этом принципе сигнальные буи, внедренные в Японии Масудой (рис. 9.12) и в Великобритании сотрудниками Королевского университета Белфаста. Более крупное и впервые включенное в энергосеть устройство построено в Тофтестоллене (Норвегия) фирмой Kvaernor Brug A/S. Основной принцип действия колеблющегося столба показан на рис В Тофтестоллене он используется в 500-киловаттной установке, построенной на краю отвесной скалы. Кроме того, национальная электрическая лаборатория (NEL) Великобритании предлагает конструкцию, устанавливаемую непосредственно на морском дне.

39 Схема установки, в которой используется принцип колеблющегося водного столба (разработана Национальной инженерной лабораторией NEL, Великобритания, размещается непосредственно на грунте, турбина приводится в действие потоком одного направления): 1 волновой подъем уровня; 2 воздушный поток; 3 турбина; 4 выпуск воздуха; 5 направление волны; 6 опускание уровня; 7 впуск воздуха.

40 Пневмобуй Масуды: 1 корпус; 2 электрогенератор; 3 клапан; 4 воздушная турбина Главное преимущество устройств на принципе водяного колеблющегося столба состоит в том, что скорость воздуха перед турбиной может быть значительно увеличена за счет уменьшения проходного сечения канала. Это позволяет сочетать медленное волновое движение с высокочастотным вращением турбины. Кроме того, здесь создается возможность удалить генерирующее устройство из зоны непосредственного воздействия соленой морской воды.

41 Преобразователи, отслеживающие профиль волны В этом классе преобразователей остановимся в первую очередь на разработке профессора Эдинбургского университета Стефана Солтера, названной в честь создателя «утка Солтера». Техническое название такого преобразователя колеблющееся крыло. Форма преобразователя обеспечивает максимальное извлечение мощности. Волны, поступающие слева, заставляют утку колебаться. Цилиндрическая форма противоположной поверхности обеспечивает отсутствие распространения волны направо при колебаниях утки вокруг оси. Мощность может быть снята с оси колебательной системы с таким расчетом, чтобы обеспечить минимум отражения энергии. Отражая и пропуская лишь незначительную часть энергии волн (примерно 5%), это устройство обладает весьма высокой эффективностью преобразования в широком диапазоне частот возбуждающих колебаний

42 Эффективность «утки Солтера» (диаметр 15 м, ось зафиксирована) Наиболее серьезными недостатками для «уток Солтера» оказались следующие: необходимость передачи медленного колебательного движения на привод генератора; необходимость снятия мощности с плавающего на значительной глубине устройства большой протяженности; вследствие высокой чувствительности системы к направлению волн необходимость отслеживать изменение их направления для получения высокого КПД преобразования; затруднения при сборке и монтаже из-за сложности формы поверхности «утки».


Тема 5. Эффективность использования гидроэнергетических ресурсов. Гидроэнергетическими ресурсами, которые могут быть использованы для получения механической или электрической энергии, считаются: - гидроэнергия

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 8 г. Одинцово Тема урока: «Альтернативные источники энергии» Разработала: Кашолкина Е.Н., учитель географии МБОУ

УДК 620.91 Хакимуллин Б.Р. студент кафедры ПТЭ, института теплоэнергетики Гумеров И.Р. магистрант кафедры ПТЭ, института теплоэнергетики Зайнуллин Р.Р. к.ф.-м.н., старший преподаватель кафедры ПЭС ЭКОЛОГО-ЭКОНОМИЧЕСКИЕ

Газотурбинные установки Газотурбинные установки ГТУ имеют единичную электрическую мощность от двадцати киловатт (микротурбины) и до нескольких десятков мегаватт это классические газовые турбины Г Т У Газотурбинные

АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ Подготовили ученики 8 А класса ГБОУ СОШ 1924 Геотермальная энергия Геотермальная энергетика направление энергетики, основанное на производстве электрической энергии за

Ветроэнергетическая установка. Область техники, к которой относится изобретение. Ветроэнергетическая установка служит для преобразования энергии ветра в механическую энергию. Уровень техники Известно множество

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА План лекции:. Циклы паротурбинных установок. Цикл Карно. Цикл Ренкина Лекция 4. ЦИКЛЫ ПАРОТУРБИННЫХ УСТАНОВОК. ЦИКЛ КАРНО В современной стационарной теплоэнергетике в основном

1 ҚКЭК 27-28 Дәрістер МҰХИТТІҢ ЖЫЛУЛЫҚ ЭНЕРГИЯСЫН ТҮРЛЕНДІРУ Крупный водный бассейн естественный коллектор энергии солнечного излучения. В глубоководных местах (>400м) разница температур поверхностных

ПЕРСПЕКТИВА ПРИМЕНЕНИЯ ВЕТРОГЕНЕРАТОРОВ В ОРЕНБУРГСКОЙ ОБЛАСТИ Митрофанов С.В., Краснова К.С., Радаев А.В. Федеральное государственное бюджетное образовательное учреждение высшего образования «Оренбургский

Цели урока: Тема: "Электроэнергетика России" 1. Дать определение понятиям электроэнергетика, энергосистема. 2. Продолжить формирование у школьников представлений и знаний об основных межотраслевых комплексах

Чистая энергия Зеленчукская ГЭС-ГАЭС Филиал ОАО «РусГидро»- «Карачаево-Черкесский филиал» 1 п. Правокубанский, 2014 г. 2 ЗЕЛЕНЧУКСКАЯ ГЭС- ГАЭС Идея трансформации Зеленчукской ГЭС в ГЭС- ГАЭС сформировалась

Добро пожаловать в мир конструкторов fischertechnik 3 Энергия в вашей повседневной жизни 3 Нефть, уголь, ядерная энергия 4 Вода и ветер 4 Солнце 5 Энергия 5 Солнечная энергия 6 Введение 6 Преобразование

Задание 1 (5 минут) В сосуде с водой плавает опрокинутая вверх дном кастрюля Будет ли изменяться уровень воды в кастрюле с изменением температуры окружающего воздуха? (Тепловым расширением воды, кастрюли

Современные электростанции - альтернатива АЭС Инструктор: Нина Аникина Ученые всего мира ищут замену опасным атомным электростанциям, использующим для получения тепла радиоактивный уран. Возобновляемые

Научно-производственное предприятие Гидроэнергоспецстрой и ЦНИИ имени академика А.Н.Крылова представляют концепцию МНОГОФУНКЦИОНАЛЬНОГО МОРСКОГО КОМПЛЕКСА Санкт-Петербург 2011 1. Проблемы использования

УДК 620.91 Хакимуллин Б.Р. студент кафедры ПТЭ, института теплоэнергетики Гумеров И.Р. магистрант кафедры ПТЭ, института теплоэнергетики Гафуров А.М. Инженер I категории УНИР ЭКОЛОГО-ЭКОНОМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Всегда в движении! Внедрение альтернативных источников электроэнергии, применение мини ГЭС на месторождении алмазов им. В. Гриба Дмитрий Едакин, ведущий инженер отдела водопонижающего контура и карьерного

Исследование для Республики Таджикистан в рамках проекта «Применение чистых, возобновляемых и/или альтернативных энергетических технологий для сельских районов в странах Центральной Азииʺ Цель и задачи

ГЕККОН_Доклад Название команды Название доклада Тема доклада Новодвинцы «Ветер, ветер, ты могуч?» Д 1 Увеличение численности населения на нашей планете, быстрое развитие производства в эпоху НТР, нарастающее

МАЛЫЕ ГИДРОЭЛЕКТРОСТАНЦИИ. ГИДРОТУРБОАГРЕГАТЫ Турбиной называется устройство, служащее для преобразования энергии падающей жидкости в механическую энергию. Они бывают двух типов: активные, рабочее колесо

Реферат: Полезная модель относится к гелио- и ветроэнергетике и может быть использована для преобразования солнечной и ветровой энергии в электрическую. 9. Цель полезной модели состоит в повышении удельной

Мощность, квт РАЗРАБОТКА И СОЗДАНИЕ АВТОНОМНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК МАЛОЙ МОЩНОСТИ С РАСШИРИТЕЛЬНОЙ ТУРБИНОЙ НА БАЗЕ ТУРБИН КОНСТРУКЦИИ ЛПИ ДЛЯ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ И ГАЗОРАСПРЕДЕЛИТЕЛЬНЫХ СТАНЦИЙ

ОСНОВНОЕ ЭНЕРГЕТИЧЕСКОЕ УРАВНЕНИЕ ГИДРОТУРБИНЫ ПОДОБНЫЕ ТУРБИНЫ КАВИТАЦИОННЫЙ ИЗНОС ГИДРАВЛИЧЕСКИЙ ТАРАН Основным энергетическим уравнением турбины (уравнением Эйлера) является уравнение, которое определяет

И методы контроля мореходных качеств корабля 133 4.3. Стабилизация судна на волнении Вопросы устройства и методов проектирования успокоителей качки судов изложены в обширной монографической и справочной

ОАО «Силовые машины» Энергия на результат РЕКОНСТРУКЦИЯ ГИДРАВЛИЧЕСКОЙ ТУРБИНЫ РЫБИНСКОЙ ГЭС Докладчик: Ю.В. Сапроненко, ведущий конструктор Соавторы: А.А. Колесников, С.Я. Ильин, А.М. Афанасьев HYDRO

Коаксиальные кабели Электрические процессы в коаксиальных цепях Способность коаксиальной пары пропускать широкий спектр частот конструктивно обеспечивается коаксиальным расположением внутреннего и внешнего

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙCКОЙ ФЕДЕРАЦИИ Брянский государственный технический университет УТВЕРЖДАЮ Ректор университета О.Н. Федонин 2014 г. ПЕЧИ ЛИТЕЙНЫХ ЦЕХОВ РАСЧЕТ ПАРАМЕТРОВ ТЕПЛООБМЕНА

B y J o h n o n Отбор тепла продуктов сгорания ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ В соответствии с Законом Украины «О теплоснабжении», одним из основных направлений развития систем теплоснабжения является внедрение

Принцип действия турбины. Активные турбины Особенности турбины как теплового двигателя. Турбина (от латинского слова «turbo», т. е. вихрь) является тепловым ротационным двигателем, в котором потенциальная

А.П. Суходолов начальник департамента по развитию промышленного комплекса администрации губернатора Иркутской области В.Ф. Федоров советник департамента по развитию промышленного комплекса администрации

4 мая 2017 г. Теплопроводность это процесс распространения теплоты между соприкасающимися телами или частями одного тела с различной температурой. Для осуществления теплопроводности необходимы два условия:

Литература 1 Интернет ресурс http://www.beltur.by 2 Интернет ресурс http://otherreferats.allbest.ru/geography/00148130_0.html 3 Интернет ресурс http://www.svali.ru/climat/13/index.htm 4 Интернет ресурс

Вариант II Часть 1 При выполнении заданий части 1 в бланке ответов 1 под номером выполняемого Вами задания (А1 А21) поставьте знак «x» в клеточке, номер которой соответствует номеру выбранного Вами ответа.

Hubertus von Grünberg, Председатель Правления Группы АББ 2010-06-08 Интеллектуальные сети Энергетическая система переживает трудные времена Регулирующее законодательство определяющий фактор в принятии

Использование нетрадиционных источников энергии для энергоснабжения населенного пункта или промышленной зоны мощностью в 1МВт Using of alternative energy sources for power supply of the village or manufacturing

УДК 621.3.078.4: 621.512 С.И.Выпанасенко, д-р техн. наук А.В.Бобров (Украина, Днепропетровск, Национальная горный университет) Основные пути повышения энергоэффективности регулирования производительности

Двухтактный двигатель внутреннего сгорания Предлагается новая схема конструкции двигателя (дизеля). Схема предлагаемого двигателя внутреннего сгорания представлена на рис. 24. В двигателе полностью отсутствуют

Анализ состояния рынка аналогов систем управления возобновляемыми источниками энергии Шляхтичев А. А. 1, Шипуля М. А. 2 Аннотация В работе представлена часть анализа проблемной ситуации проекта ГПО КИПР-1401,

ХОЛОДИЛЬНОЕ ОБОРУДОВАНИЕ. ДЛЯ ВСЕХ ОТРАСЛЕЙ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ. Наша компания специализируемся на проектировании, поставке, ремонту и сервисному обслуживанию промышленного холодильного оборудования

Экзаменационные билеты по географии материков и океанов (7 класс): Билет 1. 1. Географическая карта: значение, виды карт, способы изображения основного содержания карты. 2. Евразия: географическое положение,

Атомные электрические станции Тема 7. ПРИМЕНЕНИЕ ТЕПЛОФИКАЦИИ В ПАРОТУРБИННЫХ УСТАНОВКАХ Основные вопросы Преимущества теплофикационного цикла Противодавленческая схема ПТУ ПТУ с регулируемым отбором пара

6-я я Международная конференция Энергоэффективность в жилищно-коммунальном хозяйстве и промышленности, АДСОРБЦИОННЫЕ ТЕПЛОВЫЕ НАСОСЫ ДЛЯ ИСПОЛЬЗОВАНИЯ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА И ВТОРИЧНЫХ ЭНЕРГОРЕСУРСОВ

Административная работа за 1 полугодие Вариант 1. Часть 1 А1. На графике приведена зависимость скорости прямолинейно движущегося тела от времени. Определите модуль ускорения тела. 1) 10 м/с 2 2) 5 м/с

Лекция 0 Стационарное движение жидкости. Уравнение неразрывности струи. Уравнение Бернулли для идеальной жидкости и его применение. Формула Торричелли. Реакция вытекающей струи. Л-: 8.3-8.4; Л-: с. 69-97

Муниципальное бюджетное образовательное учреждение дополнительного образования «Центр дополнительного образования «Аэрокосмическая школа» Гранулятор для Енисея Авторы: Новокович Илья, 9, шк.137 Сон-Дон-Суль

УДК 62-176.2 Гафуров А.М. инженер I категории УНИР ФГБОУ ВО «КГЭУ» Зайнуллин Р.Р. к.ф.-м.н., старший преподаватель кафедры ПЭС ФГБОУ ВО «КГЭУ» Россия, г. Казань ВОЗМОЖНОСТИ ДОПОЛНИТЕЛЬНОЙ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ

Информация о проекте, выполняемом в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 2020 годы» Номер Соглашения о предоставлении

Водный (речной и морской) транспорт Реки являются самыми древними путями сообщения и до появления железнодорожного и автомобильного транспорта играли большую роль для связи между населенными пунктами и

Нетрадиционные и возобновляемые источники энергии Информация о дисциплине Лекции 8 часов Практические занятия 6 часов Лабораторные работы 4 часов Форма отчетности экзамен Литература Твайделл Дж., Уэйр

Пресс-релиз 28 сентября 2011 BMW продолжает борьбу за снижение вредных выбросов Даже очень эффективный двигатель внутреннего сгорания может преобразовать только около одной трети энергии топлива в механическую

Национальный исследовательский Томский политехнический университет Энергетический институт Кафедра: ЭЛЕКТРОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ Дисциплина: ИНТЕГРИРОВАНИЕ В СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ УСТАНОВОК

Занятие 8. Термодинамика Вариант 4... Как изменяется внутренняя энергия идеального газа при повышении его температуры?. Увеличивается. Уменьшается. Не изменяется 4. Это не связанные величины 4... Давление

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА План лекции:. Уравнение состояния реальных газов и паров. Водяной пар. Парообразование при постоянном давлении. Парогазовые смеси. Влажный воздух 4. Цикл воздушной холодильной

Солнечно-лунные приливы в земной коре по данным мониторинга уровня подземных вод в Чуйском бассейне Кыргызстана Мандычев А., Мандычев Д., Шабунин А.. Центрально-Азиатский институт прикладных исследований

ИНСТРУКЦИЯ ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ ЗАТВОРОВ HÖGFORS СЕРИИ 31300CS. 30/04/2014 Содержание Общие положения... 2 Транспортировка и хранение... 3 Схемы строповки... 4 Выбор места для монтажа, расположение

План лекции:. Компрессоры. Индикаторная диаграмма. Многоступенчатое сжатие в компрессоре 3. Эжектор ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА Лекция 0. КОМПРЕССОРЫ. ИНДИКАТОРНАЯ ДИАГРАММА Компрессором называют машину

Практическое использование тепловых насосов на объектах жилищнокоммунального хозяйства Украины Литвинюк Юрий Николаевич технический директор ООО «Прогресс-XXI» Украина, г. Киев г. Алушта 2013 г. Основные

Малоэтажное строительство Комплексное решение проблем электро и теплоснабжения Проблемы подключения Проблемы Недостаток резервных мощностей Необходимость подвода коммуникаций Множество согласующих инстанций

7 класс Определения. Введение Вопрос Ответ Что изучает физика? Физика - наука о природе, изучающая механические, электрические, магнитные, тепловые, звуковые и световые явления. В чём состоит задача физики?

SWorld 6-18 October 2015 http://www.sworld.education/conference/year-conference-sw/the-content-of-conferences/archives-of-individual-conferences/oct-2015 SCIENTIFIC RESEARCHES AND THEIR PRACTICAL APPLICATION.

Осадчий Г. Б., инженер

Известно, что первоисточником гидроэнергии является солнечная энергия. Вода океанов и морей, испаряясь под действием солнечного излучения, конденсируется в высоких слоях атмосферы в виде капелек, собирающихся в облака. Вода облаков выпадает в виде дождя и снега. Круговорот воды в природе происходит под влиянием солнечной энергии, таким образом, кинетическая энергия движущейся в реках воды есть, образно говоря, освобожденная энергия Солнца.

Гидроэлектростанции (ГЭС) могут быть сооружены там, где имеются гидроресурсы и условия для строительства, что часто не совпадает с расположением потребителей электроэнергии. При сооружении гидроэлектростанции обычно предполагается решение комплекса задач, а именно: выработки электроэнергии, улучшение условий судоходства и орошения. При наличии водохранилищ ГЭС может быть целесообразно использована для работы в пиковой части суточного графика объединенной энергосистемы с частыми пусками и остановками агрегатов. Это позволяет агрегатам части атомных и тепловых станций работать в наиболее экономичном и безопасном режиме, резко снижая при этом удельный расход топлива на производство 1 кВт∙ч электроэнергии в энергосистеме.

Однако, при относительной экологической чистоте ГЭС огромные водохранилища представляют большую потенциальную угрозу.

По статистическим данным в большинстве случаев аварии плотин отмечаются в период их строительства или в начальные период эксплуатации - в течение 5 – 7 лет после наполнения водохранилища. За это полностью проявляются дефекты производства работ, устанавливается фильтрационный режим, и определяются деформации сооружения. Затем наступает длительный период - около 40 – 50 лет, когда состояние сооружения стабилизируется и аварии маловероятны. После этого опасность аварий вновь увеличивается в результате развития анизотропии свойств, старения материалов и пр. Сейчас в России средний износ гидротехнических сооружений, определяемый по сроку службы, на самых крупных российских ГЭС мощностью более 2000 МВт составляет 38 %, а по ГЭС мощностью от 300 до 2600 МВт - 45 %.

В зонах риска каждого крупного водохранилища (емкостью более 10 млн м 3) расположено более 300 населенных пунктов с населением до 1 млн человек, а также многочисленные объекты экономики

Несмотря на относительную дешевизну энергии, получаемой за счет гидроресурсов, доля их в энергетическом балансе постепенно уменьшается. Это связано как с исчерпанием наиболее дешевых ресурсов, так и с большой территориальной емкостью равнинных водохранилищ. Считается, что в перспективе мировое производство энергии ГЭС не будет превышать 5 %.

Весной через створы существующих ГЭС проходит в среднем 60 % годового стока воды . При этом от 10 до 25 % годового стока воды гидроэлектростанции сбрасывается вхолостую из-за отсутствия регулирующей емкости водохранилища. Это, в первую очередь касается низконапорных плотин и турбин на реках Среднерусской равнины, в результате чего в течение года и, особенно во время весенних паводков заливаются слишком большие площади полезных земель.

Под стать размерам водохранилищ и площади сбора воды для них. Реки питаются водой с огромных площадей (таблица 1).

Таблица 1 – Данные о речном стоке отдельных стран мира

Как видно из таблицы 1 удельная водность питающих реки водой бассейнов поразительно низкая, в то время как современная «ветровая ферма» в европейских климатических условиях может обеспечить генерацию 12 – 16 МВт электроэнергии с 1 км 2 занимаемой площади.

В то же время при относительно низкой удельной водности малые поверхностные водотоки горных районов несут в себе много холода , который можно использовать в паросиловых (термодинамических) циклах для расширения интервала температур теплосилового цикла малых энергоустановок, за счет снижения температуры нижней части цикла.

Как известно, чем южнее расположена та или иная территория, тем летом там жарче и труднее найти в достаточных объемах холода (холодной воды) для эффективной работы теплосилового цикла гелиоводотема, гелиоэлектростанции или гелиохолодильника. Исключения, как правило, составляют горные и предгорные области, где малые водотоки (ручьи, ручейки и родники), не представляющие никакого интереса для гидроэнергетики, протекая, уносят безвозвратно огромное объемы холода на равнинные территории.

Этот холод малых водотоков можно использовать, совместно с энергией солнечных соляных прудом, вместо холода котлованов со льдом , которые актуальны для равнинных территорий .

Для создания гелиоэнергетики, способной конкурировать с традиционной также как и для геотермальной энергетики подходит идея нового, «холодного», направления в развитии теплоэнергетики.

«Холодное» направление непосредственно связанно с привлечением научного задела и опыта, накопленного как в энергетике, так и в холодильных производствах, в том числе автором данной статьи .

Представлено это направление д.т.н. Бродянским В.М. в следующем виде: «До последнего времени основным препятствием в сближении низкотемпературной техники и теплоэнергетики было традиционное применение воды в качестве единственно возможного и незаменимого рабочего тела на крупных электростанциях всех типов , как КЭС, так и ТЭЦ. Достоинство воды в отношении как термодинамическом, так и технико-экономическом хорошо известны.

Увеличение термического КПД паросилового цикла (преобразователя) может быть достигнуто, как известно из термодинамики, при прочих равных условиях только двумя путями. Первый их них - это повышение температурного уровня подводимого тепла, как в самом паровом цикле, так и посредством подключения «надстроек»: от МГД (магнитодинамических генераторов) до газовых турбин. Газотурбинный вариант оказался практически наиболее приемлемым и позволил поднять термический КПД электростанций примерно до 60 %.

Однако дальше «двигаться вверх» становится все труднее и дороже, тем более что незыблемым законом термодинамики каждый градус повышения температуры дает все меньший дополнительный энергетический эффект. В этой ситуации, естественно, представляется целесообразным идти по второму пути повышения КПД - расширить теплосиловой цикл «вниз». Здесь по тем же законам термодинамики «каждый градус все дороже», но термический КПД цикла растет при прочих равных условиях в результате его расширения «вниз» гораздо быстрее, чем при движении «вверх» (таблица 2).

Для нашей страны (и ряда других стран северного полушария), где температура окружающей среды в большинстве районов значительную часть года держится намного ниже 0 ⁰С, такое расширение границ цикла диктуется природными условиями. По климатическим условиям близким к России: Исландия, Северный , Канада и северная часть (Аляска).

Таблица 2 – Работа теплосилового (прямого) цикла Карно, Дж, при различных температурах источника (Т г) и приемника (Т о.с.) тепла

Т о.с.. , ⁰К

Из таблицы 2 следует, что во всех случаях - при высоких температурах подвода тепла Т г (1000 – 1500 ⁰К) и относительно низких (800 – 600 ⁰К) - отводимая работа при понижении Т о.с. существенно возрастает. Важ

но, что наибольший рост наблюдается в циклах с более низким уровнем Т г. Так, для цикла с Т г = 1500 ⁰К увеличение отводимой работы при Т о.с. = 240 ⁰К по сравнению с Т о.с. = 300 ⁰К составляет примерно 5 %, а при Т о.с. = 250 ⁰К около 4 %; в цикле с Т г = 1000 ⁰К увеличение работы при том же изменении Т о.с. существенно больше: примерно 8 и 7 % соответственно

Самое значительное увеличение термического КПД (около 16 %) соответствует относительно невысокой температуре Т г, равной 600 ⁰К. Этот факт заставляет задуматься над некоторыми практическими возможностями реализации таких циклов в теплоэнергетике.

На рисунке 1 приведены схемы возможных вариантов использования низких температур окружающей среды и температурные интервалы соответствующих циклов.

а – варианты теплосилового цикла; б – верхний и нижний рабочие интервалы температур

Рисунок 1 – Схема вариантов использования низких температур окружающей среды Т о.с. в теплосиловом цикле.

Всякое расширение интервала температур теплосилового цикла, теоретически ведущее при прочих равных условиях к повышению его термического КПД, связано, как известно, с необходимостью увеличения отношений давлений испарения и конденсации.

Возможности уникального в этом отношении вещества - воды - в современной теплоэнергетике, практически исчерпаны.

Поэтому на верхнем, «горячем», участке цикла часть перепада температур используется уже вне парового цикла, например, в газовой турбине. У современных атомных и геотермальных электростанций (по самой их природе) верхняя температура рабочих циклов ограничена, поэтому никаких других реальных возможностей существенного расширения температурного интервала работы пароводяных циклов у этих электростанций в обозримой перспективе нет.

Что касается нижней части цикла, необходимость в высоком вакууме исключает использование воды как рабочего тела при температурах даже приближающихся к нулю, не говоря о более низких. Поэтому современная «большая» теплоэнергетика вынуждена пока работать в условиях, диктуемых свойствами воды. Между тем «расширение» интервала температур работы тепловых электростанций остается в числе актуальных проблем повышения эффективности теплоэнергетики. И здесь есть только один путь - «вниз». Его предопределяют не только законы термодинамики, но и климатические условия, как в России, так и некоторых других стран.

Попытки использовать в теплоэнергетике другие рабочие тела, например, некоторые из применяемых в холодильной технике, рассматривались до последнего времени большинством специалистов-энергетиков как экзотика, хотя изредка и обсуждались в литературе.

Однако тематика обсуждения не выходила за рамки классических температур теплосилового цикла, без какого либо учета возможности и целесообразности переноса его нижней границы в область, близкую к нулю и, тем более - в область отрицательных температур. Для «водяной» теплоэнергетики это невозможно. Кроме того, возникают , пугающие кажущейся сложностью, главная из которых состоит (кроме выбора рабочего тела) в непостоянстве (включая сезонность) температуры окружающей среды - воздуха.

Очевидный и основной положительный фактор, определяющий целесообразность создания низкотемпературных паросиловых установок (преобразователей) - отсутствие в системе вакуума: во всех точках системы, в том числе в конденсаторе, поддерживается даже при самом «холодном» режиме давление, превышающее атмосферное. Это позволит существенно уменьшить объемы и массу оборудования низкотемпературной части установки.

Низкотемпературная теплоэнергетика должна занять законное место в системе энергоснабжения нашей страны, и упускать связанные с ней возможности не следует» .

«Холодное» направление развития теплоэнергетики особенно актуально для индивидуальных малых гелиоустановок на базе солнечного соляного пруда , поскольку температурный уровень подводимого тепла к преобразователю энергии не превышает 100 ⁰С.

Для выявления преимуществ охлаждения радиатора преобразователя холодной водой, определим по циклу Ренкина с рабочим телом - бутадиен-1,3 (дивинил) (С 4 Н 6) (температура кипения минус 4,47 ⁰С при давлении 760 мм рт. ст.) по данным , КПД преобразователя при охлаждении его радиатора:

а) проточной (перекачиваемой) водой для интервала температур 80 – 30 ⁰С: при i’ 1 = 570,32 кДж/кг – энтальпия жидкого дивинила при 30 ⁰С; i» 1 = 950,22 кДж/кг, i» 2 =1007,1 кДж/кг – энтальпия пара дивинила соответственно при 30 и 80 ⁰С.

η в = (i» 2 — i» 1)/(i» 2 — i’ 1) = 13,0 %;

(с фреоном ФС318 (температура кипения + 6 ⁰С при давлении 760 мм рт. ст.) КПД, рассчитанный по этой же формуле, будет 23,1 %)

б) льдом для интервала температур 80 – 10 ⁰С: при i’ 1 = 524,90 кДж/кг – энтальпия жидкого дивинила при 10 ⁰С; i» 1 = 926,10 кДж/кг, i» 2 =1007,1 кДж/кг – энтальпия пара дивинила соответственно при 10 и 80 ⁰С.

η л = (i» 2 — i» 1)/(i» 2 — i’ 1) = 16,8 %.

(с фреоном С318 КПД, рассчитанный по этой же формуле, будет 28,4 %)

Следовательно, КПД преобразователя за счет охлаждения его радиатора льдом повышается для дивинила в η л /η в = 1,29 раза, а для фреона ФС318 в 1,23 раза

В статье приводятся данные предварительных расчетов энергии, вырабатываемой водометом (преобразователем энергии) за счет охлаждения его радиатора льдом/талой водой, и сравнение с энергией потока воды приводящего в действие гидротурбину.

А в статье приведена схема использования холода малых водотоков для солнечной энергоустановки (гелиоэлектростанции).

Приведенное понижение нижней границы термодинамического цикла рационально и практикуется для нормальной работы последней ступени цилиндра низкого давления турбины современной тепловой электростанции, установленному заводом-изготовителем (как правило 0,12 кгс/см 2 , что соответствует температуре насыщенного водяного пара 49,1 ⁰С)

В завершении, в качестве иллюстрации эффективности нетрадиционных подходов в различных областях энергосбережения приведем следующий пример.

С низкими температурами связан также необычный проект «Ночной » (Night Wind).

Он разрабатывается группой исследовательских организаций и университетов из Нидерландов, Дании, Испании и Болгарии. Проект призывает к созданию европейской системы хранения энергии, получаемой от ветроэлектрических установок (), в огромных складах-холодильниках.

Непостоянство ветровой энергии, вкупе с тем простым фактом, что ночью электропотребление заметно падает, а днем растет, подтолкнули европейских ученых к неожиданной идее: в качестве колоссальных аккумуляторов энергии, способных накапливать «электричество» от и в целом стабилизировать расход энергии в , могут выступить гигантские склады-холодильники, расположенные по всему Старому свету.

Идея довольно проста и, главное, никаких особых изменений в существующих системах не требует. Просто ночью, когда потребление электричества падает, а ВЭУ продолжают работать, как обычно (не останавливать же лопасти), их мощность должна направляться на то, чтобы понизить на один градус температуру в этих холодильниках. Всего на один градус против обычной нормы.

Таким образом, энергия запасается в виде холода тысяч и тысяч тонн разнообразных продуктов, спокойно лежащих где-нибудь в Дании, Голландии или Франции. Днем же, когда потребление электричества растет, все эти гигантские холодильники можно выключить, позволив температуре постепенно подняться на один градус, т. е. вернуться к практикуемой технологической норме.

Если это будет применено во всех крупных холодильных складах Европы, то, по расчетам авторов проекта, это эквивалентно появлению в общей энергосети аккумулятора емкостью в 50 млн кВт∙ч!

К неоспоримым плюсам этого проекта относится также то, что при работе ночью холодильных машин у них выше , т. к. охлаждающий конденсаторы воздух летней ночью имеет более низкую температуру, чем днем на 10 – 15 ⁰С .

Таким образом, даже такие «бросовые» с традиционной точки зрения энергетические ресурсы, так малые водотоки (речушки и ручейки) горных местностей могут стать хорошим подспорьем в повышении энергетической эффективности гелиоустановок и систем с термодинамическими циклами.

СПИСОК ЛИТЕРАТУРЫ

1 Шелестов С.И. КРИТЕРИИ БЕЗОПАСНОСТИ гидротехнических сооружений // Академия Энергетики. 2010. № 4. С. 4 – 8.

2 Осадчий Г.Б. Солнечная энергия, её производные и технологии их использования (Введение в энергетику ). Омск: ИПК Макшеевой Е.А., 2010. 572 с.

3 Осадчий Г.Б. Гелиоводомёт с солнечным соляным прудом // Промышленная энергетика. 1996. № 9. С.46-48.

4 Осадчий Г.Б. Солнечная энергоустановка для горной местности // Промышленная энергетика. 1998. № 1.

5 Бродянский В.М. Повышение эффективности атомных и геотермальных электростанций посредством использования низких температур окружающей среды// Теплоэнергетика.– 2006.– № 3.– С. 36 – 41.

Мировой океан содержит колоссальные запасы энергии. Внутренняя энергия воды (тепловая), соответствующая перегреву воды на поверхности океана, по сравнению с донными, например, на 20 градусов, имеет значение около 10^26 Дж. Кинетическая энергия течений в океанах оценивается величиной около 10^18 Дж. Но люди сегодня умеют использовать только самую малую долю этой энергии, при этом ценой больших и долго окупающихся капиталовложений. Поэтому энергетика, основанная на использовании внутренней энергии воды, до наших дней казалась малоперспективной.

Но ограниченные запасы ископаемых топлив (газа и нефти), использование которых способствует загрязнению экологии, истощение запасов урана (наряду с опасными радиоактивными отходами), а также неопределенность сроков и последствий влияния на экологию использования в промышленности термоядерной энергии вынуждает инженеров и ученых уделять больше внимания поиску новых возможностей применения безвредных источников энергии: разницы в уровне воды в реках, а также тепла солнца, энергии Мирового океана, ветра. Общественность, а также многие инженеры еще не знают, что работы по извлечению внутренней энергии воды из океанов и морей в последние годы в некоторых странах приобрели уже большие масштабы, что у них есть обещающие перспективы. Океан хранит в себе несколько видов энергии: энергию океанских течений, приливов и отливов, термальную энергию воды (внутреннюю) и некоторые другие.

Энергия приливов

Самым очевидным способом применения энергии океанов является запуск приливных электростанций (ПЭС). Во Франции с 1967 года в устье реки Ранс на приливах, высота которых достигает13 метров, функционирует ПЭС мощностью 240 тыс. кВт с ежегодной отдачей 540 тыс. кВт/ч. Отечественный инженер Бернштейн выявил удобный метод постройки блоков ПЭС, которые можно буксировать в нужные места на плаву, рассчитал рентабельную последовательность включения электростанции в энергосети в часы их наибольшей нагрузки потребителями энергии. Идеи его уже опробованы на ПЭС, созданной в 1968 году возле Мурманска в Кислой Губе; дальше они будут проверены на ПЭС на 6 млн. кВт на Баренцевом море в Мезенском заливе.

В 70-х годах положение в энергетике поменялось. Каждый раз при поднятии поставщиками в Африке, на Ближнем Востоке и в Южной Америке цен на нефть, энергия приливов становилась все более заманчивой, так как она превосходно конкурировала в стоимости с ископаемыми видами топлива. В скором времени в Южной Корее, Советском Союзе и Англии увеличился интерес к очертаниям береговых линий и возможностям сооружения на них энергетических установок. В этих странах серьезно задумались о применении энергии приливов волн и начали выделять средства на исследования данной области.

Маяки и бакены, использующие энергию волн, усеяли побережья морей и океанов Японии. Бакены – свистки береговой охраны США уже годами действуют благодаря колебаниям волн. Сегодня уже практически не осталось прибрежных районов, где бы ни было своего собственного изобретателя, создающего устройства, работающие на основе энергии волн. С 1966 года, два города во Франции удовлетворяют свои потребности в электричестве полностью за счет энергии приливов и отливов.

Получение энергии на основе разности химического состава воды

В водах океана растворено множество солей. Можно ли использовать соленость воды в качестве источника энергии? Можно. Большое содержание солей в океане навело ученых Скриппского института океанографии в Ла-Колла (Калифорния) на мысль о создании таких сооружений. Они пришли к выводу, что для получения большого количества энергии можно создать батареи, где бы происходили реакции между несоленой и соленой водой.

Энергия биомассы мирового океана

В водах океана содержится прекрасная среда для поддержания жизни, в составе которой находятся питательные вещества, соли и минералы. В этой среде кислород, растворенный в воде, питает всех животных морей - от мельчайших до самых больших. Углекислый газ, растворенный в воде, способствует жизни морских растений - от диатомовых одноклеточных водорослей до бурых водорослей, которые достигают высоты 200-300 футов(60-90 метров). Морскому биологу стоит сделать один шаг вперед, и он сможет перейти от восприятия океана в качестве природной системы поддержания жизни к попытке извлечения на научной основе энергии из этой системы. В середине 70-х годов при поддержке ВМФ США группа ученых в области исследования океана, водолазов, морских инженеров создала первую в мире энергетическую ферму в океане на глубине40 футов(12 метров) под гладью Тихого океана, залитой солнцем, рядом с городом Сан-Клемент. Ферма имела небольшие размеры, это был эксперимент. На ней выращивались гигантские бурые водоросли. Директор проекта доктор Говард А. Уилкокс, являющийся сотрудником Центра исследований океанских и морских систем в Сан-Диего (Калифорния), считает, что до 50% энергии полученных водорослей можно превращать в топливно-природный газ метан (С2Н6). Фермы будущего, производящие водоросли на площади около100000 акров(40 тыс. га), смогут вырабатывать энергию, достаточную для того чтобы удовлетворить потребности города в США с населением 50000 человек.

Энергия течений в океанах

Группа океанологов заметила тот факт, что течение Гольфстрим несет воды рядом с берегами Флориды со скоростью5 миль в час. Идея применить этот теплый поток воды заманчива. Возможно ли это? Смогут ли гигантские подводные пропеллеры и турбины, похожие на ветряные мельницы, вырабатывать электричество, получая энергию из течений и волн? Комитет Мак-Артура, находящийся под эгидой Национального управления по исследованию атмосферы и океана в Майами (Флорида) в 1974 сделал заключение, что СМОГУТ. Общее мнение состояло в том, что определенные проблемы есть, но они все могут решиться в случае выделения ассигнований, так как «в данном проекте нет ничего, что бы превышало возможности технологической и современной инженерной мысли».

Термальная энергия океана (внутренняя энергия воды)

Заметное внимание получила «океанотермическая энергоконверсия» (ОТЭК) – генерирование электрической энергии на основе разности между температурами воды на поверхности океана и глубинными океанскими водами, засасываемыми насосом, например, при использовании в замкнутом цикле турбины фенола или аммония (легкоиспаряющихся жидкостей).

Температура океанской воды различна в разных местах. Между тропиком Козерога и тропиком Рака поверхность воды прогревается до 82 градусов по Фаренгейту (27°С). На глубине около 2000 футов(6000 метров) температура снижается до 35-38 градусов по Фаренгейту (2-3,5°С). Можно ли использовать разницу температур, т.е. внутреннюю энергию воды в целях получения электрической энергии? Может ли тепловая энергоустановка, находящаяся под водой, производить электричество? Да, может.

В далекие 1920-е годы Жорж Клод, решительный, настойчивый и одаренный французский физик реши исследовать эту возможность. Он выбрал участок океана рядом с берегами Кубы, сумел после нескольких неудачных попыток создать установку 22 кВт мощностью. Это стало научным достижением и приветствовалось множеством ученых. Применяя теплую воду с поверхности океана и холодную с глубины, создав соответствующую технологию, мы имеем все необходимое для генерирования электроэнергии, уверяли сторонники применения внутренней энергии воды океана. «По оценкам, полученным нами, в водах поверхности океана существуют запасы энергии, превышающие в 10000 раз общемировую потребность в энергии». «Увы, - отрицали скептики, - Жорж Клоду удалось получить лишь 22 киловатта электроэнергии в заливе Матансас. Дало ли это прибыль?» «Нет, не дало, так как для получения этих 22 киловатт, Клоду пришлось затратить на работу насосов 80 киловатт».

В наше время профессор Скриппского океанографического института Джон Исаакс выполняет вычисления более аккуратно. По его данным, современная технология поможет создать энергоустановки, применяющие для выработки электроэнергии разницу температур в водах океана (внутреннюю энергию воды), которые вырабатывали бы его в два раза больше, чем потребляет весь мира на сегодняшний день. Это будет электрическая энергия, которая преобразует термальную энергию океана (ОТЕС).

Страница 4 из 6

Энергия воды

Многие тысячелетия, верно, служит человеку энергия, заключенная в текущей воде. За-пасы ее на Земле колоссальны. Огромным аккумулятором энергии служит Мировой оке-ан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек. Преимущества гидроэлектростанций очевидны постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Однако здесь имеются свои недостатки экологического плана, которые ранее при строительстве плотины крупной гидроэлектростанции учитывались не в полном объёме, что в дальнейшем сказалось как на сельскохозяйственном производстве, так и на ихтиологии водных бассейнов. Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. В 1926 году в строй вошла Волховская ГЭС, в следующем началось строительство знаменитой Днепровской. Дальновидная энергетическая политика, проводящаяся в нашей стране, привела к тому, что у нас, как ни в одной стране мира, развита система мощных гидроэлектростанций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Эти станции, дающие буквально океаны энергии, стали центрами, вокруг которых развились мощные промышленные комплексы. В тоже время строительство водохранилищ этих гигантов породили необратимые процессы, такие как заболачивание местности, подтопление под-почвенными водами, нарушение естественных нерестилищ и т.д. Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших мил-лионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она много-кратно превышает мощность самых крупных энергетических установок, созданных ру-ками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов. Маленькая европейская страна Исландия "страна льда" в дословном переводе, полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли. Других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников (еще древние римляне к знаменитым баням-термам Каракаллы подвели воду из-под земли), жители этой маленькой северной страны эксплуатируют подземную ко-тельную очень интенсивно. Столица - Рейкьявик, в которой проживает половина населе-ния страны, отапливается только за счет подземных источников. Но не только для ото-пления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло, названном так в честь французского инженера Лардерелли, который еще в 1827 году со-ставил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины - 360 тысяч киловатт. Тяжёлый экономический кризис, разра-зившийся в нашей стране в августе 1998 года со всей остротой показал недоработки в нашей энергетике в районах Сахалина и Камчатки где большое количество горячих под-земных источников позволило бы своевременно и без больших затрат обеспечить население и промышленность данных регионов электричеством и теплом. Дальнейшее развитие геотермальной энергетики, позволили бы обеспечивать электроэнергией и соседние регионы. Известно, что запасы энергии в Мировом океане колоссальны. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 10^26 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 10^18 Дж. Однако пока что люди умеют утилизировать лишь ничтожные долитой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной. Однако происходящее весьма быстрое истощение запасов ископаемых топлив (прежде всего нефти и газа), использование которых к тому же связано с существенным загрязнением окружающей среды (включая сюда также и тепловое "загрязнение", и грозящее климатическими последствиями повышение уровня атмосферной углекислоты), резкая ограниченность запасов урана (энергетическое использование которых к тому же порождает опасные радиоактивные отходы) и неопределенность как сроков, так и экологических последствий промышленного использования термоядерной энергии заставляет ученых и инженеров уделять все большее внимание поискам возможностей рентабельной утилизации обширных и безвредных источников энергии и не только перепадов уровня воды в реках, но и солнечного тепла, ветра и энергии в Мировом океане. Широкая общественность, да и многие специалисты еще не знают, что по-исковые работы по извлечению энергии из морей и океанов приобрели в последние годы в ряде стран уже довольно большие масштабы и что их перспективы становятся все более обещающими. Наиболее очевидным способом использования океанской энергии представляется постройка приливных электростанций (ПЭС). С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт/ч. Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт в Мезенском заливе на Баренцевом море. Неожиданной возможностью океанской энергетики оказалось выращивание с плотов в океане быстрорастущих гигантских водорослей келп, легко перерабатываемых в метан для энергетической замены природного газа. По имеющимся оценкам, для полного обеспечения энергией каждого человека - потребителя достаточно одного гектара плантаций келпа. Таким образом, в океане, который составляет 71% поверхности планеты, потенциально имеются различные виды энергии - энергия волн и приливов; энергия химических связей газов, питательных веществ, солей и других минералов; скрытая энергия водорода, находящегося в молекулах воды; энергия течений, спокойно и нескончаемо движущихся в различных частях океана; удивительная по запасам энергия, которую можно получать, используя разницу температур воды океана на поверхности и в глубине, и их можно преобразовать в стандартные виды топлива.

Такие количества энергии, многообразие ее форм гарантируют, что в будущем человечество не будет испытывать в ней недостатка. В то же время не возникает необходимости зависеть от одного - двух основных источников энергии, какими, например, являются давно использующиеся ископаемые виды топлива и ядерного горючего, методы, получения которого были разработаны недавно.

И тем не менее, несмотря на то, что извлечение энергии океана находятся на стадии экспериментов и процесс ограничен и дорогостоящ, факт остается фактом, что по мере развития научно-технического прогресса энергия в будущем может в значительной степени добываться из моря. Когда - зависит от того, как скоро эти процессы станут достаточно дешевыми. В конечном итоге дело упирается не в возможность извлечения из океана энергии в различных формах, а в стоимость такого извлечения, которая определит, насколько быстро будет развиваться тот или иной способ добычи.

Когда бы это время ни наступило, переход к использованию энергии океана при-несет двойную пользу: сэкономит общественные средства и сделает более жизнеспособной третью планету Солнечной системы - нашу Землю.

Впервые удар по общественному карману был нанесен в 1973 году подъемом цен на ископаемые виды топлива.

Экономика, однако, лишь одна сторона дела. Другая сторона относится к странам развивающимся, которые стараются достичь уровня жизни промышленно развитых стран, определяющегося использованием большого количества энергии. Сегодня народы Азии, Африки и Латинской Америки стремятся перейти от общества, в котором ис-пользуется в основном физический труд, к обществу с развитой индустрией.

Для того чтобы удовлетворить потребность в равноправном распределении дешевой энергии между всеми странами, потребуется такое ее количество, которое, возможно, в тысячи раз превысит сегодняшний уровень потребления, и биосфера уже не справится с загрязнением, вызываемым использованием обычных видов топлива. Тем не менее президент Института исследований исследований в области электроэнергии в Пало Альто (Калифорния) Чонси Старр полагает: "Необходимо признать, что мировое потребление энергии будет развиваться именно в этом направлении и так быстро, как только позволят политические, экономические и технические факторы".

Так как соревнование за обладание истощающимися видами топлива обостряется, расход общественных средств будет расти. Рост этот продолжится, так как необходимо бороться с загрязнением воздуха и воды, теплотой, выделяющейся при сгорании ископаемых видов топлива.

Но стоит ли волноваться в поисках новых источников ископаемого топлива? За-чем дискутировать по вопросу о строительстве ядерных реакторов? Океан наполнен энергией, чистой, безопасной и неиссякаемой. Она там, в океане, только и ждет высвобождения. И это - преимущество номер один.

Второе преимущество заключается в том, что использование энергии океана позволит Земле быть в дальнейшем обитаемой планетой. А вот альтернативный вариант, предусматривающий увеличение использования органических и ядерных видов топлива, по мнению некоторых специалистов, может привести к катастрофе: в атмосферу станет выделяться слишком большое количество углекислого газа и теплоты, что грозит смертельной опасностью человечеству.

Вам также будет интересно:

Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....
Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос
22.11.2019 Желанными друзьями девушек являются бриллианты. Однако, без роскошных, богатых...
Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды
При выборе одежды мужчине в первую очередь нужно определиться со стилем, чтобы составлять...
Какого числа день бухгалтера в России: правила и традиции неофициального праздника
Вы - бухгалтер самый главный,Самый умный, самый славный,Самый лучший, без сомнений,И для...