Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Маленькие манипуляторы: советы родителям, которые идут на поводу у ребенка Ребенок манипулятор психология

Проявление туберкулеза при беременности и способы лечения

Интегральный признак сходимости. Сходимость ряда. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость

Знакочередующийся ряд является частным случаем знакопеременного ряда.

Определение 2.2. Числовой ряд , члены которого после любого номера имеют разные знаки, называется знакопеременным .

Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости .

Теорема 2.2. Пусть дан знакопеременный ряд

Если сходится ряд, составленный из модулей членов данного ряда

то сходится и сам знакопеременный ряд (2.2).

Надо отметить, что обратное утверждение неверно: если сходится ряд (2.2), то это не означает, что будет сходиться ряд (2.3).

Определение 2.3. абсолютно сходящимся , если ряд, составленный из модулей его членов, сходится.

Знакопеременный ряд называется условно сходящимся , если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Среди знакопеременных рядов абсолютно сходящиеся ряды занимают особое место. Такие ряды обладают рядом свойств, которые сформулируем без доказательства.

Произведение двух абсолютно сходящихся рядов с суммами и есть абсолютно сходящийся ряд, сумма которого равна .

Таким образом, абсолютно сходящиеся ряды суммируются, вычитаются, перемножаются как обычные ряды. Суммы таких рядов не зависит от порядка записи членов.

В случае условно сходящихся рядов соответствующие утверждения (свойства), вообще говоря, не имеют места.

Так, переставляя члены условно сходящегося ряда, можно добиться того, что сумма ряда измениться. Например, ряд условно сходится по признаку Лейбница. Пусть сумма этого ряда равна . Перепишем его члены так, что после одного положительного члена будут идти два отрицательных. Получим ряд

Сумма уменьшилась вдвое!

Более того, путем перестановки членов условно сходящегося ряда можно получить сходящийся ряд с заранее заданной суммой или расходящийся ряд (теорема Римана).

Поэтому действия над рядами нельзя производить, не убедившись в их абсолютной сходимости. Для установления абсолютной сходимости используют все признаки сходимости числовых рядов с положительными членами, заменяя всюду общий член его модулем.

Пример 2.1. .

Решение. Исходный ряд знакопеременный. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда, т.е. ряд . Так как , то члены сходного ряда не больше членов ряда Дирихле , который, как известно, сходится. Следовательно, на основании признака сравнения данный ряд сходится абсолютно. ,

Пример 2.2. Исследовать на сходимость ряд .

Решение.

2) Рассмотрим ряд, составленный из абсолютных членов . Исследуем его на сходимость, используя признак Даламбера

По признаку Даламбера ряд, составленный из абсолютных членов, сходится. Значит, исходный знакочередующийся ряд сходится абсолютно. ,

Пример 2.3. Исследовать на сходимость ряд .

Решение. 1) Данный ряд знакочередующийся. Используем признак Лейбница. Проверим, выполняются ли условия.

Следовательно, исходный ряд сходится.

2) Рассмотрим ряд, составленный из абсолютных членов . Исследуем его на сходимость, используя предельный признак сравнения. Рассмотрим гармонический ряд , который расходится.

Следовательно, оба ряда ведут себя одинаково, т.е. ряд, составленный из абсолютных членов, тоже расходится. Значит, исходный знакочередующийся ряд сходится условно. ,

Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным.

Абсолютная и условная сходимость

Ряд называется абсолютно сходящимся, если ряд также сходится.

Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно.

Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Исследовать на сходимость ряд .

Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем

поскольку . Следовательно, данный ряд сходится.

38. Знакочередующиеся ряды. Признак Лейбница.

Частным случаем знакопеременного ряда является знакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки.

Признак Лейбница

Для знакочередующихся рядом действует достаточный признак сходимости Лейбница.

Пусть {an} является числовой последовательностью, такой, что

1. an+1 < an для всех n;

Тогда знакочередующиеся ряды исходятся.

39. Функциональные ряды. Степенные ряды. Радиус сходимости. Интервал сходимости.

Понятие функционального ряда и степенного ряда

Обычный числовой ряд, вспоминаем, состоит из чисел:

Все члены ряда –это ЧИСЛА.

Функциональный же ряд состоит из ФУНКЦИЙ:

В общий член рядапомимо многочленов, факториалов и других подарков непременно входит буковка «икс». Выглядит это, например, так:

Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде:

Как видите, все члены функционального ряда это функции.

Наиболее популярной разновидностью функционального ряда является степенной ряд.

Определение:

Степенной ряд – это ряд, в общий член которого входят целые положительные степени независимой переменной.

Упрощенно степенной ряд во многих учебниках записывают так: , где– это старая знакомая «начинка» числовых рядов (многочлены, степени, факториалы, зависящие только от «эн»). Простейший пример:

Посмотрим на это разложение и еще раз осмыслим определение: члены степенного ряда содержат «иксы» в целых положительных (натуральных) степенях.

Очень часто степенной ряд можно встретить в следующих «модификациях»: илигде а – константа. Например:

Строго говоря, упрощенные записи степенного ряда,илине совсем корректны. В показателе степени вместо одинокой буквы «эн» может располагаться более сложное выражение, например:

Или такой степенной ряд:

Лишь бы показатели степеней при «иксАх» были натуральными.

Сходимость степенного ряда .

Интервал сходимости, радиус сходимости и область сходимости

Не нужно пугаться такого обилия терминов, они идут «рядом друг с другом» и не представляют особых сложностей для понимания. Лучше выберем какой-нибудь простой подопытный ряд и сразу начнём разбираться.

Прошу любить и жаловать степенной ряд Переменная может принимать любое действительное значение от «минус бесконечности» до «плюс бесконечности». Подставим в общий член ряда несколько произвольных значений «икс»:

Если х=1,то

Если х=-1,то

Теорема. Пусть - непрерывная, неотрицательная, монотонно убывающая функция, определенная при . Тогда ряд и интеграл либо оба сходятся, либо оба расходятся.

Доказательство. Ввиду монотонности при всех выполняются неравенства . Интегрируя, получаем . Тогда , или . Поэтому если сходится, то . Тогда и , ряд сходится.

Пусть теперь наоборот, известно, что ряд сходится. Тогда . Взяв произвольное выберем так, чтобы . Тогда . Значит, сходится.

Абсолютная сходимость. Свойства абсолютно сходящихся рядов

Определение. Абсолютно сходящимся рядом называется сходящийся ряд , для которого сходится и ряд .

Легко доказать, что из сходимости ряда вытекает сходимость ряда . По критерию Коши, примененному к , получаем: . Из полученного неравенства следует, что и для исходного ряда также выполнен критерий Коши, следовательно он сходится.

Обозначим , т.е. , . Очевидны равенства: . Рассмотрим ряды и . Если они сходятся, то сходится и ряд , т.е. ряд абсолютно сходится. Если же сходятся ряды , то, т.к. , ряды и тоже сходятся. Таким образом, для абсолютной сходимости необходима и достаточна сходимость рядов и .

(признак Лейбница).

Если члены знакочередующегося ряда (9.4.1), будучи взяты по модулю, образуют не возрастающую бесконечно малую последовательность, т.е. и, то этот рядсходится .

Приведем примеры знакочередующихся рядов.

Исследовать сходимость ряда .

Этот ряд сходится по признаку Лейбница, так как его члены убывают по абсолютной величине и при.

Исследовать сходимость ряда .

Нетрудно убедиться, что данный ряд удовлетворяет условиям Теоремы 1 и потому сходится .

Замечание. В теореме Лейбница существенно не только условие , но и условие. Так, например, для рядавторое условие нарушено и, хотя, ряд расходится. Это видно, если данный ряд представить в виде, т.е. удвоенного гармонического ряда.

Под знакопеременным рядом будем понимать ряд, в котором любой его член может быть как положительным , так и отрицательным .

Рассмотрим случай ряда с членами, имеющими произвольные знаки:

. (9.4.2)

Одновременно рассмотрим ряд

, (9.4.3)

где - члены ряда (9.4.2).

(достаточный признак сходимости знакопеременного ряда). Из сходимости ряда (9.4.3) следует сходимость ряда (9.4.2).

Признак Даламбера сходимости знакоположительного ряда

Пусть дан знакоположительный ряд и существует
. Тогда, еслиq < 1, то ряд сходится; если q > 1, то ряд расходится.

Доказательство: 1) пусть q < 1, докажем, что ряд сходится. Поскольку существует предел
, можно записать
или
a n (q - ) < a n +1 < a n (q + ). Выберем  таким образом, чтобы q +  < 1. Из полученного двойного неравенства и неравенства q +  < 1 следует, что

a N +2 < (q + ) a N +1 ;

a N +3 < (q + ) a N +2 < (q + ) 2 a N +1 ;

a N +4 < (q + ) a N +3 < (q + ) 3 a N +2 < (q + ) 3 a N +1 .

Итак, члены ряда a N +2 + a N +3 + a N +4 +… меньше соответствующих членов бесконечной геометрической прогрессии a N +1 (q + ) + a N +2 (q + ) 2 + a N +3 (q + ) 3 +… Знаменатель прогрессии меньше единицы, поэтому прогрессия представляет собой сходящийся ряд (см. №1). По признаку сравнения, ряд также является сходящимся.

2) Пусть теперь q > 1. Возьмем такое число , что q -  будет также больше единицы. Тогда для достаточно больших n, на основании выведенного в пункте 1) данного доказательства двойного неравенства, мы будем иметь

Отсюда a N < a N +1 < a N +2 . Следовательно члены ряда возрастают при увеличении их номера, не выполняется необходимый признак сходимости. Поэтому рядрасходится. Теорема полностью доказана.

Если q = 1, то нельзя определить характер сходимости ряда. Например, ряд сходится, а рядрасходится.

Знакочередующиеся ряды. Признак сходимости Лейбница. Понятие об абсолютно и условно сходящихся рядах

Знакочередующиеся ряды. Признак сходимости Лейбница. Знакочередующийся ряд – ряд, у которого любые рядом стоящие члены имеют противоположные знаки.

Признак сходимости Лейбница : если абсолютные величины членов знакочередующегося ряда монотонно убывают при возрастании их номера и n-й член ряда при неограниченном возрастании n стремится к нулю, т.е.

,

то этот ряд сходится.

Доказательство: возьмем сумму S 2 m первых членов ряда и запишем ее следующим образом:

S 2m = (a 1 – a 2) + (a 3 + a 4) +…+ (a 2m-1 + a 2m).

Так как разности, стоящие в скобках, на основании условия монотонности убывания абсолютных величин членов ряда, положительны, то

Если 2m возрастает, то S 2 m не убывает, т.к. каждый раз прибавляются положительные или равные нулю слагаемые.

С другой стороны ту же сумму можно представить в виде:

S 2m = a 1 – (a 2 – a 3) – (a 4 – a 5) -…- (a 2m-2 – a 2m-1) – a 2m .

В скобках стоят положительные числа, поэтому

S 2 m a 1 .

Следовательно, S 2 m , будучи монотонно возрастающей (точнее, не убывающей) и ограниченной последовательностью, имеет при m   конечный предел S:

.

Но очевидно, что

S 2 m +1 = S 2 m + а 2 m +1 .

На основании условия о стремлении n-го члена к нулю, имеем также

.

Таким образом, получаем

Мы получили, что при неограниченном возрастании n частные суммы S n стремятся к одному и тому же пределу S, независимо от того, будет ли n четное или нечетное. Поэтому ряд сходится.

Понятие об абсолютно и условно сходящихся рядах. Ряд, состоящий из членов разных знаков, называется знакопеременным . Знакопеременный ряд называется абсолютно сходящимся , если сходится как сам ряд, так и ряд, составленный из абсолютных величин его членов. Ряд называется условно сходящимся , если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Теорема: если для знакопеременного ряда сходится ряд, составленный их абсолютных величин его членов, то данный ряд также сходится.

Доказательство: рассмотрим вспомогательный ряд

Так как 1) 0
и 2) ряд
в силу заданной по условию сходимости рядатакже сходится, то на основании признака сравнения и рассматриваемый вспомогательный ряд сходится. Поэтому наш рядпредставляет собой разность двух сходящихся рядов

=

и, следовательно, сходится, ч. т. д. Обратное утверждение не верно.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд

Применяем признак Даламбера:

.

Получаем, что этот ряд сходится при
и расходится при
.

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1:
ряд сходится по признаку Лейбница (см. Признак Лейбница.).

При х = -1:
ряд расходится (гармонический ряд).

Теоремы Абеля.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд
сходится при
x = x 1 , то он сходится и притом абсолютно для всех
.

Доказательство. По условию теоремы, так как члены ряда ограничены, то

где k - некоторое постоянное число. Справедливо следующее неравенство:

Из этого неравенства видно, что при x < x 1 численные величины членов нашего ряда будут меньше (во всяком случае не больше) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд
сходится, а значит ряд
сходится абсолютно.

Таким образом, если степенной ряд
сходится в точкех 1 , то он абсолютно сходится в любой точке интервала длины 2с центром в точкех = 0.

Следствие. Если при х = х 1 ряд расходится, то он расходится для всех
.

Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что
ряд абсолютно сходится, а при всех
ряд расходится. При этом числоR называется радиусом сходимости . Интервал (-R, R) называется интервалом сходимости .

Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.

Радиус сходимости может быть найден по формуле:

Пример. Найти область сходимости ряда

Находим радиус сходимости
.

Следовательно, данный ряд сходится прилюбом значении х . Общий член этого ряда стремится к нулю.

Теорема. Если степенной ряд
сходится для положительного значениях=х 1 , то он сходится равномерно в любом промежутке внутри
.

Действия со степенными рядами.

Знакочередующиеся ряды. Признак Лейбница.
Абсолютная и условная сходимость

Для того чтобы понять примеры данного урока необходимо хорошо ориентироваться в положительных числовых рядах: понимать, что такое ряд, знать необходимый признак сходимости ряда, уметь применять признаки сравнения, признак Даламбера, признаки Коши. Тему можно поднять практически с нуля, последовательно изучив статьи Ряды для чайников и Признак Даламбера. Признаки Коши . Логически этот урок является третьим по счёту, и он позволит не только разобраться в знакочередующихся рядах, но и закрепить уже пройденный материал! Какой-то новизны будет немного, и освоить знакочередующиеся ряды не составит большого труда. Всё просто и доступно.

Что такое знакочередующийся ряд? Это понятно или почти понятно уже из самого названия. Сразу простейший пример.

Рассмотрим ряд и распишем его подробнее:

А сейчас будет убийственный комментарий. У членов знакочередующегося ряда чередуются знаки: плюс, минус, плюс, минус, плюс, минус и т.д. до бесконечности.

Знакочередование обеспечивает множитель : если чётное, то будет знак «плюс», если нечётное – знак «минус» (как вы помните ещё с урока о числовых последовательностях , эта штуковина называется «мигалкой»). Таким образом, знакочередующийся ряд «опознается» по минус единичке в степени «эн».

В практических примерах знакочередование членов ряда может обеспечивать не только множитель , но и его родные братья: , , , …. Например:

Подводным камнем являются «обманки»: , , и т.п. – такие множители не обеспечивают смену знака . Совершенно понятно, что при любом натуральном : , , . Ряды с обманками подсовывают не только особо одаренным студентам, они время от времени возникают «сами собой» в ходе решения функциональных рядов .

Как исследовать знакочередующийся ряд на сходимость? Использовать признак Лейбница. Про немецкого гиганта мысли Готфрида Вильгельма Лейбница я рассказывать ничего не хочу, так как помимо математических трудов, он накатал несколько томов по философии. Опасно для мозга.

Признак Лейбница : Если члены знакочередующегося ряда монотонно убывают по модулю, то ряд сходится.

Или в два пункта:

1) Ряд является знакочередующимся.

2) Члены ряда убывают по модулю: , причём, убывают монотонно.

Если выполнены эти условия, то ряд сходится .

Краткая справка о модуле приведена в методичке Горячие формулы школьного курса математики , но для удобства ещё раз:

Что значит «по модулю»? Модуль, как мы помним со школы, «съедает» знак «минус». Вернемся к ряду . Мысленно сотрём ластиком все знаки и посмотрим на числа . Мы увидим, что каждый следующий член ряда меньше , чем предыдущий. Таким образом, следующие фразы обозначают одно и то же:

– Члены ряда без учёта знака убывают.
– Члены ряда убывают по модулю .
– Члены ряда убывают по абсолютной величине .
Модуль общего члена ряда стремится к нулю:

// Конец справки

Теперь немного поговорим про монотонность. Монотонность – это скучное постоянство.

Члены ряда строго монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю МЕНЬШЕ, чем предыдущий: . Для ряда выполнена строгая монотонность убывания, её можно расписать подробно:

А можно сказать короче: каждый следующий член ряда по модулю меньше, чем предыдущий: .

Члены ряда нестрого монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю НЕ БОЛЬШЕ предыдущего: . Рассмотрим ряд с факториалом: Здесь имеет место нестрогая монотонность, так как первые два члена ряда одинаковы по модулю. То есть, каждый следующий член ряда по модулю не больше предыдущего: .

В условиях теоремы Лейбница должна выполняться монотонность убывания (неважно, строгая или нестрогая). Кроме того, члены ряда могут даже некоторое время возрастать по модулю , но «хвост» ряда обязательно должен быть монотонно убывающим.

Не нужно пугаться того, что я нагородил, практические примеры всё расставят по своим местам:

Пример 1

В общий член ряда входит множитель , и это наталкивает на естественную мысль проверить выполнение условий признака Лейбница:

1) Проверка ряда на знакочередование. Обычно в этом пункте решения ряд расписывают подробно и выносят вердикт «Ряд является знакочередующимся».

2) Убывают ли члены ряда по модулю? Здесь нужно решить предел , который чаще всего является очень простым.

– члены ряда не убывают по модулю, и из этого автоматически следует его расходимость – по той причине, что предела не существует *, то есть, не выполнен необходимый признак сходимости ряда .

Пример 9

Исследовать ряд на сходимость

Пример 10

Исследовать ряд на сходимость

После качественной проработки числовых положительных и знакопеременных рядов с чистой совестью можно перейти к функциональным рядам , которые не менее монотонны и однообразны интересны.

Определение 1

Числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $, члены которого имеют произвольные знаки (+), (?), называется знакопеременным рядом.

Рассмотренные выше знакочередующиеся ряды являются частным случаем знакопеременного ряда; понятно, что не всякий знакопеременный ряд является знакочередующимся. Например, ряд $1-\frac{1}{2} -\frac{1}{3} +\frac{1}{4} +\frac{1}{5} -\frac{1}{6} -\frac{1}{7} +\ldots - $ знакопеременный, но не являющийся знакочередующимся рядом.

Отметим, что в знакопеременном ряде членов как со знаком (+), так и со знаком (-) бесконечно много. Если это не выполняется, например, ряд содержит конечное число отрицательных членов, то их можно отбросить и рассматривать ряд, составленный только из положительных членов, и наоборот.

Определение 2

Если числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится и его сумма равна S,а частичная сумма равна $S_n$ , то $r_{n} =S-S_{n} $ называется остатком ряда, причём $\mathop{\lim }\limits_{n\to \infty } r_{n} =\mathop{\lim }\limits_{n\to \infty } (S-S_{n})=S-S=0$, т.е. остаток сходящегося ряда стремится к 0.

Определение 3

Ряд $\sum \limits _{n=1}^{\infty }u_{n} $ называется сходящимся абсолютно, если сходится ряд, составленный из абсолютных величин его членов $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $.

Определение 4

Если числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, а ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $, составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (неабсолютно) сходящимся.

Теорема 1 (достаточный признак сходимости знакопеременных рядов)

Знакопеременный ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, причём абсолютно, если сходится ряд, составленный из абсолютных величин его членов$\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $.

Замечание

Теорема 1 даёт только достаточное условие сходимости знакопеременных рядов . Обратная теорема неверна, т.е. если знакопеременный ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, то не обязательно, что сходится ряд, составленный из модулей $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $ (он может быть как сходящимся, так и расходящимся). Например, ряд $1-\frac{1}{2} +\frac{1}{3} -\frac{1}{4} +...=\sum \limits _{n=1}^{\infty }\frac{(-1)^{n-1} }{n} $ сходится по признаку Лейбница, а ряд, составленный из абсолютных величин его членов, $\sum \limits _{n=1}^{\infty }\, \frac{1}{n} $ (гармонический ряд) расходится.

Свойство 1

Если ряд $\sum \limits _{n=1}^{\infty }u_{n} $ абсолютно сходится, то он абсолютно сходится при любой перестановке его членов, при этом сумма ряда не зависит от порядка расположения членов. Если $S"$ - сумма всех его положительных членов, а $S""$ - сумма всех абсолютных величин отрицательных членов, то сумма ряда $\sum \limits _{n=1}^{\infty }u_{n} $ равна $S=S"-S""$.

Свойство 2

Если ряд $\sum \limits _{n=1}^{\infty }u_{n} $ абсолютно сходится и $C={\rm const}$, то ряд $\sum \limits _{n=1}^{\infty }C\cdot u_{n} $ также абсолютно сходится.

Свойство 3

Если ряды $\sum \limits _{n=1}^{\infty }u_{n} $ и $\sum \limits _{n=1}^{\infty }v_{n} $ абсолютно сходятся, то ряды $\sum \limits _{n=1}^{\infty }(u_{n} \pm v_{n}) $ также абсолютно сходятся.

Свойство 4 (теорема Римана)

Если ряд условно сходится, то какое бы мы не взяли число А, можно переставить члены данного ряда так, чтобы его сумма оказалась в точности равной А; более того, можно так переставить члены условно сходящегося ряда, чтобы после этого он расходился.

Пример 1

Исследовать на условную и абсолютную сходимость ряд

\[\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot 9^{n} }{n!} .\]

Решение. Данный ряд является знакопеременным, общий член которого обозначим: $\frac{(-1)^{n} \cdot 9^{n} }{n!} =u_{n} $. Составим ряд из абсолютных величин $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\frac{9^{n} }{n!} $ и применим к нему признак Даламбера. Составим предел $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } $, где $a_{n} =\frac{9^{n} }{n!} $, $a_{n+1} =\frac{9^{n+1} }{(n+1)!} $. Проведя преобразования, получаем $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9^{n+1} \cdot n!}{(n+1)!\cdot 9^{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9^{n} \cdot 9\cdot n!}{n!\cdot (n+1)\cdot 9^{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9}{n+1} =0$. Таким образом, ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\frac{9^{n} }{n!} $ сходится, а значит, исходный знакопеременный ряд сходится абсолютно.Ответ: ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot 9^{n} }{n!} $ абсолютно сходится.

Пример 2

Исследовать на абсолютную и условную сходимость ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} $.

  1. Исследуем ряд на абсолютную сходимость. Обозначим $\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} =u_{n} $ и составим ряд из абсолютных величин $a_{n} =\left|u_{n} \right|=\frac{\sqrt{n} }{n+1} $. Получаем ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\, \frac{\sqrt{n} }{n+1} $ с положительными членами, к которому применяем предельный признак сравнения рядов. Для сравнения с рядом $\sum \limits _{n=1}^{\infty }a_{n} =\sum \limits _{n=1}^{\infty }\, \frac{\sqrt{n} }{n+1} $ рассмотрим ряд, который имеет вид $\sum \limits _{n=1}^{\infty }\, b_{n} =\sum \limits _{n=1}^{\infty }\, \frac{1}{\sqrt{n} } \, $. Этот ряд является рядом Дирихле с показателем $p=\frac{1}{2}
  2. Далее исследуем исходный ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} $ на условную сходимость. Для этого проверим выполнение условий признака Лейбница. Условие 1): $u_{n} =(-1)^{n} \cdot a_{n} $, где $a_{n} =\frac{\sqrt{n} }{n+1} >0$, т.е. этот ряд знакочередующийся. Для проверки условия 2) о монотонном убывании членов ряда используем следующий метод. Рассмотрим вспомогательную функцию $f(x)=\frac{\sqrt{x} }{x+1} $, определенную при $x\in }

Вам также будет интересно:

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань
Одним из любимейших сказочных героев является кот в сапогах. И взрослые, и дети обожают...
Как определить пол ребенка?
Будущие мамочки до того, как УЗИ будет иметь возможность рассказать, кто там расположился в...
Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....