Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Маленькие манипуляторы: советы родителям, которые идут на поводу у ребенка Ребенок манипулятор психология

Проявление туберкулеза при беременности и способы лечения

Искусственные бриллианты. Использование высокотехнологичных бриллиантов в ювелирном деле. Применение искусственных алмазов

Минералы и полезные ископаемые имеют свойство заканчиваться в недрах земли. Но у людей есть потребность в использовании различных минералов, в том числе и алмазов. Поэтому с развитием технологий начинается разработка и переход на искусственную добычу камней. Искусственные алмазы практически ничем не отличаются на сегодняшний день от натуральных минералов. По виду камни сложно отличить даже геммологам, что свидетельствует о высоком уровне сходства.

Искусственный алмаз

Ценные свойства алмаза

Конечно, даже развитие аппаратуры и технологий еще не стало причиной полного перехода от природных камней на синтетические алмазы. Пока компании по в лабораториях руководствуются принципом «два из трех»:

  • качество;
  • размер;
  • рентабельность.

Два из трех критериев выбирается в процессе, но пока предел или идеал не достигнут, ученым есть к чему стремиться.

Большинство людей видят в магазинах алмазы уже в обработанном виде в качестве бриллиантов. Камни оправляются в драгметаллы и выступают в роли дорогостоящих украшений.

По химическому составу бриллиант является углеродом с особым строением кристаллической решетки. Происхождение минералов точно не известно. Существует даже теория космического происхождения алмазов. Наверное, поэтому сложно полностью повторить или воссоздать картину образования камня в лаборатории.

Первые попытки синтезировать камень начались после исследования структуры алмаза - она очень плотная, кристаллическая решетка состоит из атомов, соединенных ковалентными сигма-связами. Разрушить эти соединения легче, чем их сформировать.

Несмотря на то что бриллиант является украшением номер один, камень используется во многих сферах, помимо ювелирного дела. Именно этот фактор и натолкнул ученых на синтез искусственных камней. А еще алмаз имеет уникальные характеристики с точки зрения химии и физики:

  • Самая высокая твердость (10 из 10 по шкале Мооса). Даже состав сплава стали не настолько твердый, как алмаз.
  • Температура плавления вещества 800-1000 градусов Цельсия с доступом кислорода и до 4000 градусов Цельсия без доступа кислорода, с дальнейшим превращением алмаза в графит.
  • Алмаз используется в качестве диэлектрика.
  • У минерала самая высокая теплопроводность.
  • Камень обладает люминесценцией.
  • Минерал не растворяется в кислоте.

Выход на рынок синтетических алмазов может случиться в один момент и стать неожиданностью. Алмазная индустрия претерпит изменения, уменьшатся объемы продаж. Из камня начнут изготавливать полупроводники. Из-за высокой температуры плавления, полупроводники из алмаза можно разогревать до больших показателей, чем кремний. При температурах около 1000 градусов Цельсия кремний в микросхемах начинает плавиться и отключается, а алмаз продолжает работать.

Искусственный алмаз - действительно полезная вещь в науке и производстве. Среди ученых, которые занимаются синтезом алмазов для промышленности распространена такая поговорка: «Если ничего нельзя сделать из алмаза, сделайте из него бриллиант».

Методики создания вещества

Первые попытки получить алмаз искусственный начались еще в конце XVIII века, когда стало известно о составе камня, но технологии не позволяли воссоздать нужную температуру и давление для образования минерала. Только в пятидесятых годах XX века попытки синтеза вещества увенчались успехом. Среди стран, выращивающих алмазы, были США, ЮАР, Россия.

Оборудование для создания искусственных алмазов

Первые синтетические алмазы были далеки от идеала, но сегодня камни практически неотличимы от природных алмазов. Процесс выращивания является трудоемким и материально затратным. Существует несколько вариантов и форм синтеза алмаза:

  • Способ получения HPHT-алмазов. Эта методика близка к природным условиям. При ней необходимо соблюдать температуру 1400 градусов Цельсия и давление в 55000 атмосфер. В производстве используются затравочные алмазы, которые кладут на пласт из графита. Размер затравочных камней до 0,5 миллиметров в диаметре. Все компоненты размещают в специальном устройстве, напоминающем автоклав в определенном порядке. Сначала располагается основа с затравкой, потом идет сплав металла, который является катализатором, затем прессованный графит. Под воздействием температур и давления ковалентные пи-связи графита преобразуются в сигма-связи алмаза. Металл в процессе плавится, и графит оседает на затравку. Синтез продолжается от 4 до 10 дней, все зависит от требуемых размеров камня. Весь потенциал методики не раскрыт, и не все ученые доверяли этой технологии, пока не увидели созданные крупные кристаллы ювелирного качества. Огранка у полученных камней одинаковая.
  • Синтез CVD-алмазов. Аббревиатура расшифровывается, как «осаждение из пара». Второе название процедуры - пленочный синтез. Технология более старая и проверенная, чем HPHT-производство. Именно она создает промышленные алмазы, которые можно использовать даже для лезвий в микрохирургии. По технологии также нужна подложка, на которую помещается алмазная затравка и все это располагается в специальных камерах. В таких камерах создаются вакуумные условия, после чего пространство заполняется газами водорода и метана. Газы разогреваются с помощью СВЧ-лучей до температуры 3000 градусов Цельсия, и углерод, который был в метане, оседает на основу, которая остается холодной. Синтетический алмаз, созданный по этой технологии, получается более чистым, без примесей азота. Эта методика напугала большинство концернов, добывающих камень в природе, поскольку она способна дать чистый и большой кристалл. Такой камень практически не будет иметь металлических примесей и его сложнее будет отличить от натурального. Алмазы, полученные по этой технологии, можно будет использовать в компьютерах в качестве полупроводника вместо кремниевых пластин. Но для этого необходимо усовершенствовать методику выращивания, поскольку пока размеры получаемых алмазов ограничены. Сегодня параметры пластин доходят до отметки 1 сантиметр, но через 5 лет планируется достижение планки в 10 сантиметров. А стоимость карата такого вещества не будет превышать 5 долларов.
  • Способ взрывного синтеза - одна из последних задумок ученых, позволяющих получить искусственный алмаз. Методика дает возможность получить искусственный камень за счет детонации взрывчатых веществ и последующего охлаждения после взрыва. Кристаллы в результате получаются мелкие, но способ приближен к естественному образованию минералов.

А еще недавно возникло направление, позволяющее создавать мемориальные алмазы. Эта тенденция позволяет увековечить память о человеке в камне. Для этого тело после смерти поддается кремации, а из праха изготавливается графит. Далее графит используется в одном из способов синтеза алмазов. Так, камень содержит в себе останки тела человека.

Поскольку все способы дорогостоящие, нередко в ювелирном деле используют не искусственные вещества, а подделки или другие разновидности камня. Стекляшка среди алмазов - самая дешевая и устаревшая практика. На сегодняшний день она неудачная, поскольку распознать подлинник от подделки можно легко - достаточно царапнуть камень или посмотреть на игру света. Чаще всего в качестве бриллиантов продают фианиты.

Перспектива развития синтеза алмаза

Будущее синтетического алмаза начинается именно сегодня. Искусственный минерал стал символом времени, и вскоре у людей появится доступ к недорогим и красивым изделиям. Но пока технологии находятся на стадии развития и совершенствования. Например, лаборатория в Москве способна выращивать по вышеперечисленным технологиям до 1 килограмма алмазов в год. Конечно, этого мало для обеспечения потребностей промышленности. Дальнейшие обработки добываемых камней также требуют времени и оборудования.

Поэтому пока ведется традиционными способами, и никто не отказывается от разработки новых месторождений, открытия кимберлитовых трубок. Как только появилось производство искусственных алмазов, компания De Beers - практически монополия на рынке алмазов - начала переживать о своем бизнесе. Годовой оборот концерна составляет до 7 миллиардов долларов в год. Но пока синтетические камни не являются конкурентами натуральным алмазам, а их доля на рынке достигает всего 10%.

А еще, вместе с синтезом, развивалась и геммология, которая позволяет рассказать о происхождении камня. Синтетические алмазы можно легко отличить от натуральных. В качестве признаков выделяют:

  • включения металлов в камнях из лаборатории;
  • секторы роста, которые определяются в цветных алмазах;
  • разный характер люминесценции алмазов.

Технологии и знания ученых совершенствуются с каждым днем. Процесс запущен, над ним работают специалисты. В скором времени мир увидит результаты и, возможно, даже откажется от традиционной добычи алмазов из недр земли.

Алмаз, так же как и графит, по своему химическому составу пред­ставляет собой чистый углерод. Они являются полиморфными модифика­циями одного и того же элемента, однако свойства их резко различаются. Это объясняется различием их кристаллических решеток.

Алмаз был известен в далеком прошлом, широко применяется в на­стоящем, велики перспективы его использования в будущем. С развитием техники, когда возникла необходимость в новых видах минерального сы­рья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время су­ществование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовления тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порош­ки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что ос­новано прежде всего на их чрезвычайно высокой твердости. Б последние годы все больше привлекают внимание другие исключительные свойства алмаза: его.электрические свойства при использовании в качестве полупро­водников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать нако­пителем и хранителем обширной информации.

Плотность алмаза 3,513 г/см 3 , микротвердость 100,6 ГПа, модуль уп­ругости 825 ГПа, удельное электросопротивление 10 12 - 10 14 Ом-см. Кроме углерода в кристалле алмаза всегда присутствует некоторое количество примесей, составляющих не более десятых долей процента. Основные хи­мические элементы - примеси в алмазе: азот, кислород, водород, Fe, Ti, Mn, Si,Al.

Как известно, основные факторы, способствующие образованию ал­мазов - высокие давления и температура, которые имеют место в земных недрах на большой глубине.

Искусственные алмазы начали получать в целом ряде стран в сере­дине 50-х годов XX века. Внедрение синтетических алмазов избавило от необходимости дробить большую часть природных алмазов для изготовле­ния порошков, паст и абразивного инструмента. Выпускаются синтетиче­ские алмазы марок АСО, АСР, АСВ, АСК, АСС, САМ, АСБ и АСПК, а также микропорошки на основе синтетических алмазов АСМ и АСН разме­ром от 1 до 630 нм.

Применяются синтетические алмазы главным образом для изготов­ления различных видов абразивного, лезвийного и бурового инструмента. Важнейшими областями применения алмазных инструментов являются об­работка инструментов и деталей машин из металлокерамических твердых сплавов, бурение геологических и эксплуатационных скважин в твердых и абразивных породах, обработка изделий из гранита, мрамора и др. Наибо­лее широко порошкообразные синтетические алмазы применяются для из­готовления шлифовальных кругов, предназначенных для доводки и заточки твердосплавного металлорежущего инструмента.

В настоящее время известны три метода синтеза алмазов:

в области термодинамической стабильности алмаза воздействи­ем на исходный углеродсодержащий материал высоким статическим давле­нием и температурой в.течение времени, измеряемого по крайней мере не­сколькими секундами; .

в области термодинамической стабильности алмаза воздействи­ем на исходный углеродсодержащий материал высоким динамическим дав­лением и температурой в течение времени, измеряемого микросекундами и долями микросекунд;

в области термодинамической стабильности графита, осущест­вляемой при атмосферном и меньшем давлениях и высокой температуре эпитаксиальным наращиванием алмаза на затравках.

Основная масса синтетических алмазов производится во всем мире по первому методу, т.е. при высоких статических давлениях. Отрицатель­ной чертой второго метода является кратковременность действия высоких давлений и температур, из-за чего зародившиеся кристаллы новой фазы лишены возможности длительного роста и образуют поэтому весьма мелкие частицы.

Третий метод получения алмазов требует очень точного соблюдения условий проведения процесса. В противном случае на поверхности затра­вочных кристаллов будет образовываться как алмаз, так и графит, а затем графит покроет всю поверхность, и рост алмазной фазы прекратится.

Рациональное сочетание трех условий, необходимых для синтеза ал­мазов (температуры, давления и наличия определенной среды) лежит в ос­нове методов производства синтетических алмазов при высоких статиче­ских давлениях, используемых во многих странах мира.

Многочисленные исследования отечественных и зарубежных уче­ных в области синтеза алмазов позволили предложить механизм превраще­ния графита в алмаз, который подробно описывается в различных литера­турных источниках и объясняется перестройкой связи электронной конфи­гурации sp в sp 3 .

Как уже было сказано выше, для синтеза алмазов используются уг-леродсодержащие материалы: стеклоуглерод, кокс, синтетические смолы и, конечно, графит. Однако следует знать, что при синтезе алмазов исходное сырье обязательно проходит стадию графитации. Углеродсодержащее ве­щество до термообработки должно быть максимально однородным по хи­мическому составу. Кроме того, распределение областей когерентного рас­сеяния (ОКР) по размерам должно быть достаточно узким.

Нецелесообразно использовать в качестве исходного углеродсодер-жащего вещества сажу, так как она очень мелкодисперсна. Это затрудняет набивку камер аппаратов высокого давления.

На практике в технологии синтеза алмазов используются определен­ные марки графита МПГ-6, ГМ-ОЗОСЧ, МГ-ОСЧ и т.д. В этом случае обра­зуются алмазы с высоким выходом и хорошего качества. Качество синтези­рованных алмазов определяется их размерами и твердостью.

Поскольку синтез алмазов протекает при высоких давлениях и тем­пературах, то необходимо иметь надежные аппараты для твердофазного синтеза, в которых достаточно длительное время можно поддерживать и высокие давления, и температуры. Нужно уметь измерять такие давления и температуры, определять степень их однородности в реакционной зоне.

Синтез алмазов проводится в специальных камерах, изготовленных из высокопрочных материалов. Такими материалами являются твердые сплавы на основе карбида вольфрама и кобальта. Подъем температуры в подобных аппаратах осуществляется пропусканием электрического тока через нагревательное устройство.

Конструкции камер высокого давления, где создаются температуры от 727°С до 2227°С весьма различны. Среди множества аппаратов такого рода рассмотрим кратко три вида наиболее распространенных конструкций: многопуансонный аппарат, аппарат типа «цилиндр - поршень» и аппарат типа «наковальня с лункой».

Представителем первого вида является тетраэдрическая установка схема которой представлена на рис. 1.14. Камера состоит из четырех пуан­сонов с усеченными трехгранными концами. Торцы этих пуансонов имею: вид равносторонних треугольников и ограничивают тетраэдрический объ

Рис. 1.14. Схема тетраэдрического аппарата высокого давления; а -- схема расположения 4 пуансонов; б - установка в

Сборе, верхний пуансон удален

С помощью четырех гидравлических прессов, симметрично распс ложенных в пространстве, пуансоны двигаются вдоль своей оси, образу рабочий -объем. В него помещается контейнер из рабочего вещества, вь: полненный в виде тетраэдра.

Рабочее вещество - это вещество, посредством которого передаете давление во всех установках, где проводятся высокотемпературные иссж давания при высоких давлениях. Оно должно быть твердым телом с мало сжимаемостью и удовлетворять следующим условиям:

иметь высокую температуру плавления и малую теплопровод ность;

не проводить электрический ток; быть химически инертным;

быть достаточно пластичным, чтобы с его помощью можно бь ло получать более или менее равномерное (квазигидростатическое) давл(ние в определенном объеме.

Нагреватель (чаще всего графитовая трубка) заполняется реакцию] ной шихтой и вкладывается в тетраэдрический контейнер так, чтобы конц нагревателя выходили из противоположных ребер тетраэдра. При сближ-нии пуансонов они сжимают тетраэдрический контейнер. Часть рабоче) вещества вытекает в зазоры между пуансонами, образуя уплотняющие пр< кладки. Электрический ток для создания нужной температуры подводится нагревателю через пуансоны, соприкасающиеся с нагревательным устрой­ством.

В настоящее время для изготовления контейнеров, работающих при высоких давлениях и температурах (10 ГПа и 2700°С), применяют в основ­ном четыре вещества: тальк или стеатит 3MgO-4SiOrH 2 O, пирофиллит Al 2 O 3 -4Si0 2 -H 2 O, литографский камень 95% СаСОз + 5% смеси 8Ю 2 , А1 2 0 3 , Fe 2 0 3 и катлинит - красную кремнистую сцементированную глину, место­рождения которой находятся в США. Они несколько различаются между собой по механическим свойствам и по термоустойчивости.

Контейнеры могут изготовляться как из блоков соответствующих минералов, так и прессованием порошков из этих минералов с употребле­нием различных связок (жидкое стекло, бакелит и др.).

Описанная тетраэдрическая камера требует приложения к ней уси­лия прессового устройства по четырем осям, что вызывает немалые трудно­сти, поэтому создают камеры, где сжатие осуществляется одним поршнем от какого-либо прессового агрегата. Ввиду этого значительное распростра­нение получили аппараты типа «цилиндр - поршень», так называемые белт-аппараты (belt 1 - пояс). Схема аппарата показана на рис.1.15.

1.15. Схема аппарата типа белт: 1 - - пуансон, 2 - - кон­тейнер

Рис. 1.16. Схема камеры высокого давления с поддержи­вающими кольцами (на­ковальня с лункой): 1 -пуансон, 2 - - стальное кольцо, 3 - контейнер, 4 - образец, 5 - зазор

Основными частями его являются два конических пуансона (1) из твердого сплава, на которые в несколько слоев надеты стальные бандажи. Их торцы входят в полый цилиндр из твердого сплава, также упрочненный набором бандажей. Внутрь цилиндра помещается цилиндрический контей­нер из рабочего вещества (2), в котором находится нагреватель с реакцион­ной шихтой. Нагревателем является трубка из электропроводящего мате­риала, ось нагревателя совпадает с осью контейнера.

Вся установка помещается в гидравлический пресс. При сдвигании пуансонов рабочее вещество пластически деформируется, часть его затека­ет в зазоры между цилиндром и пуансоном и надежно запирает камеру сжа­тия. Благодаря образующимся прокладкам из рабочего вещества пуансоны оказываются электрически изолированными от цилиндра.

Нагрев осуществляется пропусканием электрического тока через на­греватель, соприкасающийся с пуансонами, к которым подсоединяются электроконтакты от источника тока.

В установке типа «белт» возможно получать давления около 20 ГПа и температуры порядка 2700°С и можно иметь большой реакционный объ­ем. Однако детали данной конструкции весьма сложны в изготовлении, и эксплуатация ее требует высокой квалификации персонала. Поэтому в СССР была разработана более простая конструкция типа «наковальни с лункой», которая получила широкое распространение не только в лабора­торных исследованиях, но и в промышленности.

На рис. 1.16 представлена схема описываемого аппарата в разрезе. Аппарат включает два одинаковых пуансона из твердого сплава (1), каждый из которых в торце имеет центральное углубление (лунку) в виде сегмента сферы, окруженное поверхностью, обработанной на конус. По боковой по­верхности каждый пуансон (1) скреплен стальным кольцом (3). Между тор­цевыми поверхностями пуансонов помещается контейнер (2), выполненный из соответствующего рабочего вещества. Образец (4) собирается вместе с нагревательным элементом и вставляется в полость контейнера. Цифрой (5) обозначен зазор между обработанными на конус, периферическими участ­ками поверхности пуансонов.

Высокие давление (до 7 ГПа) и температура (до 2200°С) получаются следующим образом.. Образец (углеродсодержащий материал) вместе с на­гревательным элементом (4) помещается в контейнер (2), который собран­ным устанавливается в камеру высокого давления, образованную обращен­ными друг к другу торцами пуансонов (1). Камера в сборе закладывается в гидравлический пресс. При сближении пуансонов периферическая часть контейнера (2) постепенно деформируется и заполняет зазор (5). Пластиче­ское течение материала контейнера (2) прекращается, когда при возраста­нии сжимающего усилия пресса достигается необходимая величина давле­ния в камере. Электрическая мощность, необходимая для нагревания образ­ца.(4). подается на, нагреватель через пуансоны (1), для чего один из пуан­сонов должен быть электрически изолирован от остальных частей аппара­туры.

В данном случае твердосплавная деталь имеет линзообразное углуб­ление и называется «наковальней с лункой» (НЛ), а контейнер напоминает формой чечевицу. Для создания более высоких давлений камера типа НЛ была изменена. На конусной поверхности пуансона были сделаны кольце­вые канавки в виде разрезанного по большому диаметру тора (рис. 1.17).

Это не влияет на принцип действия камер, но значительно повышает стой­кость твердосплавной детали к разрушению. В таких аппаратах можно дос­тичь давлений в 13 - 14 ГПа. Конструкция получила наименование «нако­вальня с лункой и тороидом (НЛТ)», а контейнер для нее - «тороид» (рис. 1.18).

Рис. 1.17. Схема камеры высокого ис 1.18. Осевой разрез контейнера давления типа тороид типа тороид

Важным обстоятельством, сильно влияющим на характер протека­ния синтеза алмазов в камерах высокого давления с твердой средой, являет­ся возникновение градиентов температуры и давления в реакционной зоне, что усложняет технологию процесса. Истинная величина температуры мо­жет быть определена непосредственно в камере синтеза термопарой. В диа­пазоне температур до 930°С применяются платино-платинородиевая и для более высоких температур - вольфрам-рениевая термопары.

Прямой синтез алмазов из углеродсодержащих веществ без добавки каких-либо способствующих образованию алмаза веществ (катализаторов, растворителей) протекает при очень высоких давлениях и температурах. При каталитическом синтезе удается снизить температуру и давление более чем в 2 раза (4,1 - 4,5 ГПа, 1150 - 1200°С), поэтому каталитический синтез алмазов сейчас является основным. Катализаторами являются: марганец, хром, тантал, а также сплавы, образованные этими элементами с металлами, которые каталитически неактивны для данного процесса. Кроме того, ката­лизаторами синтеза алмазов являются сплавы переходных элементов Ti, Zr, Hf, V, W, Mo, Nb с металлами Си, Ag, Аи. Превращение графита в алмаз происходит при хорошем контакте между ним и жидким (расплавленным) металлом.

Следует отметить, что в синтетических алмазах, получаемых с по­мощью катализаторов, всегда наблюдаются различные включения.

Нельзя не сказать о возможности получения алмаза из газовой фазы при низких давлениях, т.е. о так называемом эпитаксиальном синтезе веще­ства.

Наряду с получением алмаза в условиях, когда он является термоди­намически устойчивым веществом (при высоких давлениях), алмазы можнс синтезировать в области его неустойчивости, т.е. при относительно низких давлениях. Для этого проводят термическое разложение углеродсодержа-пщх газообразных веществ, например метана, ацетилена, оксида углерода и др. В реакционный сосуд предварительно вводят кристаллы алмаза. Если имеется грань кристалла алмаза, вблизи которой концентрация атомов уг­лерода в виде пара превышает соответствующую равновесную, то избыток атомов углерода будет осаждаться на этой грани, воспроизводя кристалли­ческую структуру алмазной решетки. Процесс этот очень медленный. Кро­ме того, рабочие условия благоприятствуют образованию на поверхности подложки графита, который нужно периодически удалять с нее. Удельная производительность таких установок невелика, и сам процесс пока не на­шел промышленного применения.

В области термодинамической устойчивости алмаза его можно по­лучать в виде алмазной пыли из углеродсодержащих веществ во взрывной волне. Этот вариант синтеза следует отнести к методу динамического по­гружения.

Искусственные бриллианты – прекрасная альтернатива для тех, кто не может позволить себе натуральные камни, при этом за гораздо меньшую цену вы получаете великолепное украшение, изготовленное из экологически чистого материала. На сегодняшний день различают два основных вида искусственных бриллиантов - синтетические камни и так называемые, заменители алмазов.

Процесс создания синтетического алмаза был разработан в 1892 году французским химиком Анри Муассаном (Henri Moissan). Крошечные частички синтетического алмаза образовывались при нагревании угля или углеродного материала в чугунном тигле до экстремально высоких температур (4000¼ C). На сегодняшний день в изготовлении искусственных бриллиантов используют два основных метода: воздействие на материал высоким давлением при нагреве до высоких температур (HTHP) и метод химического осаждения из газовой фазы (CVD).

Температура плюс давление

Данная технология известна также под названиями HTHP и «GEPOL». В данном случае используется специальная установка в виде тетраэдрического пресса или шестиступенчатого кубического пресса высокого давления. Алмазное «семечко» помещают в рабочую камеру, которая находится внутри пресса, и подвергают воздействию высокой температуры и высокого давления, при этом создаются условия, максимально приближенные к естественным характеристикам процесса образования алмазов в природе. В отличие от натуральных алмазов, температурно-прессовой метод позволяет «вырастить» искусственный алмаз за семь-десять дней. Нередко дополнительная обработка синтетических алмазов температурой и давлением применяется для улучшения характеристик камня и достижения максимальной схожести с натуральным аналогом.


Метод химического осаждения из газовой фазы (CVD)

Разработанный в 80-х годах прошлого века метод предполагает условия выращивания кристалла при более низком давлении. В рабочую камеру помещается частица исходного материала, которая затем подвергается комбинированному воздействию температуры и давления, в то время как соединение выпаренной углеродной плазмы и водорода наслаивается на субстрат. Углеродные газы заряжаются микроволновой энергией и притягиваются к исходному материалу. При использовании метода химического газофазного осаждения формирование синтетического алмаза занимает несколько дней.


Выращенные в лабораторных условиях алмазы не уступают натуральным в твёрдости, кливаже (спайности), коэффициенте преломления, световой дисперсии, удельном весе и сиянии. Также как и натуральные алмазы, синтетические варианты могут содержать небольшие включения.

Цветовая гамма и оптические характеристики искусственных бриллиантов

В отличие от натуральных бриллиантов, которые в большинстве своем не имеют цвета, синтетические бриллианты обладают легким желтоватым оттенком и виной тому включения азота, которые рассеиваются в структуре кристаллической решетки во время фазы роста кристалла. Включения азота поглощают голубой спектр светового луча, в результате чего кристалл приобретает желтоватый оттенок.

Заменители бриллиантов

Заменители бриллиантов широко используются в ювелирной промышленности с 1970-х годов, вначале бриллианты заменяли кубически стабилизированным цирконом (фианитом), позже появились такие заменители как муассанит и Nexus. Более сотни лет назад для имитации бриллиантов использовали хрусталь, циркон и белый сапфир, особенно популярны эти камни были в изготовлении перстней в викторианском стиле.

Заменитель бриллиантов Nexus представляет собой соединение углерода с другими веществами. Такие заменители отличаются прочностью и твердостью и сопровождаются утроенной пожизненной гарантией прочности. Материалом для изготовления фианитов служит диоксид циркония. Среди всех заменителей бриллиантов фианит считается наименее прочным и, соответственно, одним из самых дешевых.

Муассанит, который синтезируют из карбида кремния, славится своим блеском и сиянием. Высокая прочность этого заменителя бриллианта, безусловно, отразилась и на его цене, из всех заменителей, муассанит самый дорогой, к тому же этот кристалл обладает определенными внешними особенностями, которые позволяют отличить его от натурального бриллианта.

При сравнении искусственных и натуральных бриллиантов разница, которая видна невооруженным глазом, – это стоимость кристаллов, однако стоит отметить, что белые (бесцветные) синтетические бриллианты нередко не уступают в цене натуральным бесцветным алмазам. Еще одно отличие: в натуральных бриллиантах присутствуют включения и неоднородность, в то время как синтетические варианты практически безупречны.

Сравнительная характеристика

Если вы решили приобрести украшение с искусственным бриллиантом, вам определенно удастся сэкономить кругленькую сумму, но если вы хотите максимально снизить затраты, тогда обратите внимание на изделие с заменителями бриллиантов, они стоят намного дешевле, чем вещицы с искусственными алмазами.

Заменители уступают натуральному бриллианту в прочности и твердости, но в плане сияния и блеска могут составить достойную конкуренцию натуральным кристаллам. К тому же заменители совершенно чисты и лишены каких бы то ни было включений. Муассанит обладает наиболее ярким блеском и интенсивностью бликования, что в некотором роде создает нежелательный для некоторых покупателей эффект «дискотечного шара», фианиты не обладают таким сиянием, как бриллианты, но лучше отбрасывают блики.

Синтетические алмазы, или бриллианты, это искусственно выращенные бриллианты, возникшие в результате человеческой деятельности, относящиеся к классу промышленных изделий. Такие камни обладают той же атомной структурой, химическим составом и физическими свойствами, что и настоящие добытые бриллианты, к тому же они производятся из тех же материалов, а именно: чистый углерод, кристаллизованный в изотропичную кубическую форму.

Уникальные свойства синтетических алмазов делают их превосходным продуктом для удивительно разнообразного применения в промышленности, науке и быту. Сочетание свойств делает искусственный алмаз одним из самых впечатляющих материалов в мире.

Отсутствие дефектов кристаллической решетки считается основным выдающимся свойством алмаза. Чистота и совершенство кристалла делают алмазы прозрачными, высокая теплопроводность актуальна для сферы промышленности, а твердость, оптическая дисперсия и химическая стойкость сделали алмаз популярнейшим драгоценным камнем. Оптическая дисперсия присуща всем алмазам, остальные характеристики могут варьироваться в зависимости от метода и условий создания.

Свойства бриллиантов включают:

Оптические свойства и цвет синтетических алмазов

Искусственный бриллиант имеет самый широкий спектральный диапазон из всех известных материалов: от ультрафиолетового до дальнего инфракрасного и микроволнового. В сочетании с механическими и термическими свойствами алмазы идеальны в производстве лазерной оптики, применении лазеров.

Бриллианты можно встретить в любом вообразимом цвете с бесчисленным количеством оттенков, тонов и уровней насыщенности. Цвет возникает из-за включений на уровне атомов, застрявших в кристаллической решетке камня.

Цвет состоит из 3 основных компонентов:


Созданные в лаборатории бриллианты выращиваются в трех потрясающих цветах – желтом, синем и бесцветном. Эти цвета являются перманентными, никогда не меняются, не выцветают со временем или из-за температурного воздействия.

Рассмотрим более подробно:


Заменители драгоценного камня

Заменитель бриллианта это материал, внешний вид которых сильно напоминает настоящие бриллианты. Если эксперт не осмотрит заменитель на близком расстоянии, имитация почти неотличима от настоящего алмаза. Поддельные камни, в отличие от оригиналов, не имеют кристаллической решетки углерода.

Подделки алмазов существовали еще в 1920 году – были обнаружены формы шпинели, такие как корундолит и радиент, а десятилетиями позже – формы титаната стронция, сапфира, рутила и других минералов, возглавивших мировой рынок фальшивых бриллиантов.

В последние годы появился новый класс алмазов-имитаторов со значительным повышением качества. Одним из наиболее распространенных имитаторов бриллиантов является диоксид циркония, или фианит.

Обнаруженный в 1976 году материал занимает второе место после муассанита в производстве фальшивых бриллиантов. Материал смешивают со стабилизирующим агентом, например оксидом кальция или иттрия оксидом. Фианиты доступны на рынке в различных цветах и чистоте/яркости.

Бесцветный фианит является одним из самых дорогих, поскольку произвести его тяжелее всего.

Коэффициент относительной плотности добытого алмаза ниже, чем у фианита, этот фактор используется как эффективная проверка на подлинность бриллианта, осуществляемая посредством специального устройства, напоминающего перо ручки. Фальшивка тяжелее и приобретает характерный зеленовато-желтый цвет при воздействии коротковолнового ультрафиолетового излучения.

Муассанит ярче, чем алмаз, и его сложнее отличить от настоящего бриллианта, чем фианит. Химически он известен, как карбид кремния или карборунд. Генри Мауссан получил Нобелевскую премию за открытие материала муассанита, найдя фрагменты метеорита в кратере. Свойства мауссанита позволяют выдавать его за настоящий бриллиант даже при самых минимальных человеческих усилиях и современных методах обработки.

Покупатель камня может быть легко обманут, купив вместо бриллианта реплику. Природные бриллианты имеют шероховатую поверхность и черные включения, у муассанита же нет косметических дефектов, эстетические качества материала оцениваются очень высоко.

Некоторые другие заменители бриллиантов доступные сегодня – циркон, белый топаз, синтетический рутил, белый сапфир и алюмоиттриевый гранат. Эти поликристаллические синтетические бриллианты производятся методом химического осаждения из газовой фазы при низкой температуре и низком давлении.

К заменителям относится также стеклянный бриллиант, симулянт, изначально сделанный из горного хрусталя, а сегодня - из стекла или акриловых полимеров.

Еще в XVIII веке ювелиру из Эльзаса Георгу Фридриху Страссу, от чьего имени и получил название материал, в голову пришла идея наносить на нижнюю сторону свинцового стекла (хрусталя) металлическую пудру. Сегодня некоторые компании используют метод осаждения металла, получая равномерное тончайшее покрытие.

Хрустальные стразы производятся австрийской компанией Swarovski и компанией Preciosa из Чехии.

Технология выращивания искусственного камня

Метод получения искусственных алмазов осуществляется посредством ручного управления температурой и давлением в лабораторных условиях. На сегодняшний день существует 2 варианта получения техногенных камней, достаточно крупных для создания ювелирных изделий:


Как вырастить алмаз в домашних условиях?

Для того чтобы провести опыт и узнать, как сделать алмаз дома, вам понадобится:


Рассмотрим процесс поэтапно:


Примечание: из-за масла в микроволновой печи могут появиться искры, это не страшно, искры перестанут появляться спустя несколько минут. Внутри кружки температура невероятно высокая, поэтому конструкцию трогать не нужно до полного остывания.

Федеральная торговая комиссия США настаивает на том, чтобы синтетические бриллианты были маркированы лазерной гравировкой. Другим доступным способом, устанавливающим различие между добытым природным алмазом и камнем, выращенным в лаборатории, является использование научного аппарата и программы, изучающей и фиксирующей характерную кристаллическую решетку.

На сегодняшний день самым крупным синтетическим бриллиантом в России является камень в 10,07 карата темно-синего цвета с изумрудной огранкой, выращенный российской компанией по производству алмазов “Нью Даймонд Технолоджи”.

Камень был получен методом использования высоких температур и высокого давления. Международный Геммологический Институт сертитфицировал данный алмаз, как имеющий ясность Si1, когда включения заметны опытному грейдеру с 10-кратным увеличением, камень имеет легкое свечение, отличные пропорции, симметрию и глянец.

26 мая 2015 года Международный геммологический институт (IGI) в Гонконге выдал сертификат на необычный рекордный бриллиант массой 10,02 карата, цвета E и чистоты VS1. Подобные драгоценные камни не такая уже и редкость в ювелирном мире, но уникальность данного случая состояла в том, что камень не был добыт из земных недр, а был огранен из 32-каратного кристалла синтетического алмаза, выращенного российской компанией New Diamond Technology (NDT). «Это далеко не первый наш рекорд, — говорит генеральный директор компании Николай Хихинашвили. — Предыдущий, 5-каратный, продержался всего два месяца».

Роман Колядин, директор по производству, показывает мне небольшой цех в одном из технопарков неподалеку от Сестрорецка. Цех безлюден, лишь полтора десятка гидравлических прессов стоят вдоль стен. Это и есть «месторождение» — внутри прессов, в условиях высоких температур и давлений, микрон за микроном растут абсолютно безупречные алмазы. На пультах управления контроллеров у каждого пресса отражаются текущие параметры, но Роман просит снимать картинку так, чтобы эти данные не попали в кадр: «Общие принципы синтеза алмазов хорошо известны и используются в промышленности уже более полувека. А вот детали режимов синтеза — одно из ноу-хау нашей компании». Я обращаю внимание на прецизионные кондиционеры, поддерживающие микроклимат в цеху с точностью до десятых долей градуса. Неужели в такой точности есть необходимость? «Помните, мы сразу же закрыли за собой дверь, чтобы избежать сквозняка? — объясняет Роман. — Небольшие отклонения в температурном режиме могут серьезно повлиять на качество алмаза, и не в лучшую сторону. А мы всегда стремимся получить идеальное качество».


Процесс выращивания монокристаллов алмаза при высокой температуре (около 1500 °C, с нужным градиентом) и высоком давлении (50−70 тыс. атм.). Гидравлический пресс обжимает специальный контейнер, внутри которого находится металлический расплав (железо, никель, кобальт и др.) и графит. На подложке размещается одна или несколько затравок — небольших кристаллов алмаза. Сквозь камеру протекает электрический ток, разогревающий расплав до нужной температуры. В этих условиях металл служит растворителем и катализатором процесса кристаллизации углерода на затравке в форме алмаза. Процесс выращивания одного крупного или нескольких более мелких кристаллов длится 12−13 суток.

Подсмотрели у природы

История синтетических алмазов начинается с конца XVIII века, когда ученые окончательно поняли, что этот камень по своему составу является углеродом. В конце XIX века были попытки превратить дешевые варианты углерода (уголь или графит) в твердый и блестящий алмаз. Заявления об удачном синтезе делали многие известные ученые, такие как французский химик Анри Муассан или британский физик Уильям Крукс. Позднее, правда, было установлено, что никто из них на самом деле успеха не добился, и первые синтетические алмазы были получены только в 1954 году в лабораториях компании General Electric.


Более дешевый процесс осаждения алмаза из ионизированной углеводородной газовой среды на подложке, разогретой до 600−700°С. Для выращивания монокристаллов с помощью CVD требуется алмазная монокристаллическая подложка, выращенная с помощью HPHT. При осаждении на кремний или поликристаллический алмаз получается поликристаллическая пластина, имеющая ограниченное применение в электронике и оптике. Скорость роста — от 0,1 до 100 мкм/ч. Толщина пластин обычно ограничена 2−3 мм, поэтому вырезанные из нее алмазы можно использовать в качестве ювелирных, но их размер, как правило, не превышает 1 карата.

Процесс, который использовали для синтеза в GE, был «подсмотрен» у природы. Считается, что земные алмазы образуются в мантии, на глубине в сотни километров под поверхностью Земли, при высокой температуре (около 1300°С) и высоком давлении (около 50 000 атм.), а затем выносятся на поверхность магматическими породами, такими как кимберлиты и лампроиты. Разработчики GE обжимали с помощью пресса ячейку, внутри которой находился графит и железо-никелево-кобальтовый расплав, выступавший в качестве растворителя и катализатора. Этот процесс был назван HPHT (High Pressure High Temperature — высокое давление, высокая температура). Именно этот способ позднее стал коммерческим для получения недорогих технических алмазов и алмазных порошков (сейчас их производят миллиардами карат в год), а в 1970-х с его помощью научились изготавливать и ювелирные камни массой до 1 карата, хотя и весьма среднего качества.


Две основные технологии промышленного получения синтетических алмазов — это HPHT и CVD. Существует еще ряд экзотических методик, таких как синтез нанокристаллов алмаза из графита при взрыве или экспериментальный метод получения микронных алмазов из суспензии частиц графита в органических растворителях под воздействием ультразвуковой кавитации.

Обходной путь

С 1960-х годов в мире идет разработка еще одного метода синтеза алмазов — CVD (Chemical Vapor Deposition, осаждение из газовой фазы). В нем алмазы осаждаются на подогреваемую подложку из углеводородного газа, который ионизируется с помощью СВЧ-излучения или разогревается до высокой температуры. Именно на этот метод синтеза в начале 2000-х стали возлагать большие надежды и небольшие стартапы, и крупные компании типа Element Six, входящей в группу De Beers.


До последнего времени метод HPHT оставался сильно недооцененным. «Когда мы несколько лет назад покупали оборудование, нам все в одни голос говорили, что промышленные прессы пригодны разве что для синтеза алмазных порошков», — говорит Николай Хихинашвили. Все ресурсы выделялись на разработку CVD, а технология HPHT считалась нишевой, никто из специалистов не верил, что с ее помощью можно выращивать достаточно крупные кристаллы. Однако, по словам Николая, специалистам компании удалось разработать собственную технологию синтеза, которая буквально произвела в отрасли эффект разорвавшейся бомбы. Несколько лет назад в отчете одной из геммологических лабораторий так и было написано: «Вес данного бриллианта составляет 2,30 карата! Подобная величина бриллианта еще до недавнего времени была гарантом его природного происхождения».


Огранка алмазов для получения сверкающих бриллиантов — процесс долгий и не слишком впечатляющий для непосвященного человека. И выращенные, и натуральные алмазы обрабатываются совершенно одинаковым образом.

Лучшие друзья девушек

«Мы, конечно, не единственные, кто выращивает алмазы крупнее 5−6 карат, — объясняет Николай. — Но все остальные подчиняются принципу «два из трех»: крупные, качественные, коммерчески выгодные. Мы первые, кто научился получать крупные кристаллы алмаза высокого качества по приемлемой стоимости. На 32 прессах мы можем выращивать около 3000 карат в месяц, и это камни очень высокого качества — алмазы цвета D, E, F и чистоты от чистейших IF до SI, в основном типа II. 80% нашей продукции — это ювелирные алмазы массой от 0,5 до 1,5 карата, хотя мы можем вырастить под заказ алмаз любого размера». В качестве доказательства Николай протягивает мне кристалл размером с 10-рублевую монету: «Вот это, например, 28 карат. Если огранить его, получится бриллиант карат в 15».


В начале 2000-х мировой алмазный монополист, компания De Beers, была сильно обеспокоена грядущим выходом на ювелирный рынок синтетических алмазов, опасаясь, что это может подорвать бизнес. Но время показало, что бояться нечего — синтетические алмазы занимают очень малую долю ювелирного рынка. К тому же за это время были разработаны методы исследований, которые позволяют достаточно уверенно идентифицировать выращенные алмазы. Признаками синтеза являются включения металла, в цветных алмазах можно рассмотреть секторы роста, к тому же HPHT, CVD и натуральные природные алмазы в УФ-лучах имеют разный характер люминесценции.


В зависимости от содержания азота алмазы относят к одному из двух основных типов. Алмазы типа I содержат до 0,2% азота, атомы которого расположены в узлах кристаллической решетки группами (Ia) или по одиночке (Ib). Тип I преобладает среди природных алмазов (98%). Как правило, такие камни редко бывают бесцветными. Алмазы типа IIa практически не содержат азота (менее 0,001%), среди природных камней их всего 1,8%. Еще реже (0,2%) встречаются безазотные алмазы с примесью бора (IIb). Атомы бора в узлах кристаллической решетки обуславливают их электропроводность и придают алмазам голубоватый оттенок.

«Как относятся потребители к выращенным алмазам? Хорошо, — говорит Николай, — особенно современная молодежь. Для них важно, что эти алмазы бесконфликтны и созданы людьми с помощью высоких технологий без вмешательства в природу. Ну и цена примерно вдвое ниже. Конечно, в сертификате написано, что камни выращенные, но ведь носят-то кольцо с бриллиантом, а не сертификат! А по физическим и химическим свойствам наши алмазы идентичны природным».


Пока что большую часть прибыли дает изготовление алмазов для ювелирного рынка. Однако, скорее всего, в ближайшие годы возникнет огромный спрос на выращенные алмазы и алмазные пластины для специальной оптики, микроэлектроники и других высокотехнологичных промышленных применений.

От украшений к промышленности

Ювелирные алмазы — это прибыльная часть бизнеса NDT, но завтрашний день принадлежит другому направлению. Технический директор компании NDT Александр Колядин любит говорить: «Если из алмаза уже ничего больше нельзя изготовить, сделай бриллиант». На самом деле наиболее перспективный рынок для крупных высококачественных синтетических алмазов — это промышленность. «Ни один природный алмаз не годится для использования в специальной оптике или электронике, — говорит Александр Колядин. — В них слишком много дефектов. А пластины, вырезанные из наших алмазов, имеют почти идеальную кристаллическую решетку. Некоторые исследовательские организации, которым мы предоставляем наши образцы для изучения, с трудом могут поверить в измеренные параметры — настолько они идеальны. И не просто отдельные образцы — мы можем уверенно обеспечить повторяемость характеристик, что для промышленности жизненно важно. Алмазы — это теплоотводы, это окна для специальной оптики и для синхротронов, и, конечно, силовая микроэлектроника, над созданием которой сейчас работают во всем мире».


«Промышленное направление пока составляет 20% нашего производства, но года через три мы планируем довести его до 50%, тем более что спрос быстро растет. Сейчас мы в основном делаем пластины 4 х 4 и 5 х 5 мм, вырезали по заказу несколько 7 х 7 и 8 х 8 мм и даже 10 х 10 мм, но это пока не массовое производство. Наша следующая цель, — говорит Николай Хихинашвили, — это перейти к изготовлению дюймовых алмазных пластин. Это тот минимум, который очень востребован в массовой электронной и оптической промышленности. Для получения таких пластин нужно вырастить кристалл алмаза массой в сто карат. Это наш план на ближайшее будущее». «На десятилетие?» — уточняю я. Николай с огромным удивлением смотрит на меня: «Десятилетие? Мы собираемся сделать это до конца года».

Вам также будет интересно:

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань
Одним из любимейших сказочных героев является кот в сапогах. И взрослые, и дети обожают...
Как определить пол ребенка?
Будущие мамочки до того, как УЗИ будет иметь возможность рассказать, кто там расположился в...
Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....