Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Цветок для шторы своими руками

Как отстирать засохшую краску с одежды в домашних условиях Чем очистить вещь от краски

Как определить пол ребенка?

Маска для лица с яйцом Маска из куриного яйца

Искусственный Интеллект. Противоречия и проблемы создания. Искусственный интеллект: проблемы и пути решения

План

Введение

1. Проблема определения искусственного интеллекта

2. Проблема определения задач искусственного интеллекта

3. Проблема безопасности

4. Проблема выбора пути к созданию искусственного интеллекта

Заключение

Список использованной литературы


Введение

С Искусственным интеллектом (ИИ) сложилась странная ситуация – изучается то, чего еще нет. И если этого не будет в течение ближайших 100 лет, то очень может быть, что эпоха ИИ на этом окончится.

Исходя из сказанного выше, вытекает основная философская проблема в области ИИ – возможность или не возможность моделирования мышления человека. В случае если когда-либо будет получен отрицательный ответ на этот вопрос, то все остальные вопросы не будут иметь не малейшего смысла.

Следовательно, начиная исследование ИИ, заранее предположим положительный ответ. Привожу несколько соображений, которые подводят нас к данному ответу.

1. Первое доказательство является схоластическим, и доказывает непротиворечивость ИИ и Библии. Даже люди далекие от религии, знают слова священного писания: «И создал Господь человека по образу и подобию своему…». Исходя из этих слов, мы можем заключить, что, поскольку Господь, во-первых, создал нас, а во-вторых, мы по своей сути подобны ему, то мы вполне можем создать кого-то по образу и подобию человека.

2. Создание нового разума биологическим путем для человека дело вполне привычное. Дети большую часть знаний приобретают путем обучения, а не как заложенную в них заранее.

3. Принципиальная возможность автоматизации решения интеллектуальных задач с помощью ЭВМ обеспечивается свойством алгоритмической универсальности. Это означает, что на них можно программно реализовывать любые алгоритмы преобразования информации, – будь то вычислительные алгоритмы, алгоритмы управления, поиска доказательства теорем или композиции мелодий.

Проблема искусственного интеллекта является сейчас одной из самых злободневных. Ею занимаются ученые различных специализаций: кибернетики, лингвисты, психологи, философы, математики, инженеры. Рассматриваются вопросы: что такое интеллект вообще и чем может являться искусственный интеллект, его задачи, сложность создания и опасения. И именно сейчас, пока ИИ еще не создан, важно задать правильные вопросы и ответить на них.

В своей работе я в основном использовала электронные источники расположенные в сети интернет, потому как только там есть свежая информация о разработках в области искусственного интеллекта на русском языке.

В приложении я поместила фотографии (некоторых наиболее известных ныне существующих роботов с элементами ИИ) и философскую иллюстрацию (к сожалению не известного мне художника), а также полное описание тестов Тьюринга и Сёрля, на которые я ссылаюсь во второй главе.


1. Проблема определения искусственного интеллекта

Выразить суть интеллекта в каком-то одном определении представляется исключительно сложной, практически безнадежной задачей. Интеллект есть нечто ускользающее, не вмещающееся в установленные языком смысловые рамки. Поэтому ограничимся просто тем, что приведем ряд известных определений и высказываний об интеллекте, которые позволят представить себе «объем» этого необычного понятия.

Некоторые специалисты за интеллект принимают способность рационального, мотивированного выбора, в условиях недостатка информации; способность решать задачи на основе символьной информации; способность к обучению и самообучению.

Достаточно емкие и интересные определения интеллекта даны в английском словаре Вебстера и Большой Советской Энциклопедии. В словаре Вебстера: «интеллект – это: а) способность успешно реагировать на любую, особенно, новую ситуацию путем надлежащих корректировок поведения; б) способность понимать связи между фактами действительности для выработки действий, ведущих к достижению поставленной цели». В БСЭ: «интеллект… в широком смысле – вся познавательная деятельность человека, в узком смысле – процессы мышления, неразрывно связанные с языком как средством общения, обмена мыслями и взаимного понимания людей». Здесь интеллект прямо связывается с деятельностью и языком коммуникации.

По большому счету больших разногласий в этом вопросе нет. Интереснее другое: критерии, по которым можно однозначно определить разумный, мыслящий, интеллектуальный субъект перед нами или нет.

Известно, что в свое время А. Тьюринг предложил в качестве критерия, определяющего, может ли машина мыслить, «игру в имитацию». Согласно этому критерию, машина может быть признана мыслящей, если человек, ведя с ней диалог по достаточно широкому кругу вопросов, не сможет отличить ее ответов от ответов человека. (Более полное описание теста в Приложении )

Однако мысленный эксперимент «Китайская комната» Джона Сёрля (Описание эксперимента в Приложении ) – аргумент в пользу того, что прохождение теста Тьюринга не является критерием наличия у машины подлинного процесса мышления. Можно и дальше приводить примеры критериев, по которым «машинный мозг» можно считать способным к мыслительной деятельности и тут же находить им опровержения.

Единого ответа на вопрос чем является искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки. Эти определения можно свести к следующим:

Искусственный интеллект – это личность на неорганическом носителе (Чекина М.Д.).

Искусственный интеллект – это область изучение разумного поведения (у людей, животных и машин) и попытки найти способы моделирования подобного поведения в любом типе искусственно созданного механизма (Блай Уитби).

Искусственный интеллект – это экспериментальная философия (В. Сергеев).

Сам же термин «искусственный интеллект» – ИИ – AI – artificial intelligence был предложен в 1956 г. на семинаре с аналогичным названием в Дартсмутском колледже (США). Семинар был посвящен разработке методов решения логических, а не вычислительных задач. В английском языке данное словосочетание не имеет той слегка фантастической антропоморфной окраски, которую оно приобрело в довольно неудачном русском переводе. Слово intelligence означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть английский аналог: intellect (Т.А. Гаврилова).

Так же существуют термины «сильный» и «слабый» искусственный интеллект.

Термин «сильный искусственный интеллект» ввел Джон Сёрль, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум – это разум.

«Слабый искусственный интеллект» рассматривается лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

2. Проблема определения задач искусственного интеллекта

Следующим философским вопросом ИИ является цель создания. В принципе все, что мы делаем в практической жизни, обычно направлено на то, чтобы больше ничего не делать. Однако при достаточно высоком уровне жизни человека на первые роли выступает уже не лень, а поисковые инстинкты. Допустим, что человек сумел создать интеллект, превышающий свой собственный. Что теперь будет с человечеством? Какую роль будет играть человек? Для чего он теперь нужен? И вообще, нужно ли в принципе создание ИИ?

По-видимому, самым приемлемым ответом на эти вопросы является концепция «усилителя интеллекта» (УИ). Здесь уместна аналогия с президентом государства – он не обязан знать валентности ванадия или языка программирования Java для принятия решения о развитии ванадиевой промышленности. Каждый занимается своим делом – химик описывает технологический процесс, программист пишет программу; в конце концов, экономист говорит президенту, что вложив деньги в промышленный шпионаж, страна получит 20%, а в ванадиевую промышленность – 30% годовых. При такой постановке вопроса любой человек сможет сделать правильный выбор.

В данном примере президент использует биологический УИ – группу специалистов с их белковыми мозгами. Но уже сейчас используются и неживые УИ – например мы не могли бы предсказать погоду без компьютеров, при полетах космических кораблей с самого начала использовались бортовые счетно-решающие устройства. Кроме того, человек уже давно использует усилители силы (УС) – понятие, во многом аналогичное УИ. В качестве усилителей силы ему служат автомобили, краны, электродвигатели, прессы, пушки, самолеты и многое-многое другое.

Основным отличием УИ от УС является наличие воли. Ведь мы не сможем себе представить, чтобы вдруг серийный «Запорожец» взбунтовался, и стал ездить так, как ему хочется. Не можем представить именно потому, что ему ничего не хочется, у него нет желаний. В тоже время, интеллектуальная система, вполне могла бы иметь свои желания, и поступать не так, как нам хотелось бы. Таким образом перед нами встает еще одна проблема – проблема безопасности.

3. Проблема безопасности

Философские проблемы создания искусственного интеллекта можно разделить на две группы, условно говоря, «до и после разработки ИИ». Первая группа отвечает на вопрос: «Что такое ИИ, возможно ли его создание?» На них я постаралась ответить в своей работе. И вторая группа (этика искусственного интеллекта) задаётся вопросом: «Каковы последствия создания ИИ для человечества?», которая приводит нас к проблеме безопасности.

Данная проблема будоражит умы человечества еще со времен Карела Чапека, впервые употребившего термин «робот». Большую лепту в обсуждение данной проблемы внесли и другие писатели-фантасты. Как самые известные можно упомянуть серии рассказов писателя-фантаста и ученого Айзека Азимова, а так же довольно свежее произведение – «Терминатор». Кстати именно у Айзека Азимова мы можем найти самое проработанное, и принятое большинством людей решение проблемы безопасности. Речь идет о так называемых трех законах роботехники.

технические науки

  • Шапкарин Алексей Михайлович , бакалавр, аспирант
  • Военно-воздушная академия имени профессора Н. Е. Жуковского и Ю. А. Гагарина, г. Воронеж
  • ВОЗМОЖНОСТЬ
  • ПРОБЛЕМА
  • ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
  • БЕЗОПАСНОСТЬ

Основная философская проблема в области искусственного интеллекта – возможность или не возможность моделирования мышления человека. В данной статье коротко рассмотрим суть данной проблемной области.

  • Синтез каналов слежения бортовой РЛС, функционирующей в условиях сложной помеховой обстановки, на основе методов теории искусственного интеллекта
  • Гносеологический анализ проблемы искусственного интеллекта
  • Особенности разработки программ в современных IDE: часть 2
  • Инновационные подходы управления структурообразованием строительных композитов с повышенной коррозионной устойчивостью

Основная философская проблема в области искусственного интеллекта - возможность или не возможность моделирования мышления человека. В случае если когда-либо будет получен отрицательный ответ на этот вопрос, то все остальные вопросы не будут иметь ни малейшего смысла.

Следовательно, начиная исследование искусственного интеллекта, заранее предполагается положительный ответ. К данному ответу приводит ряд соображений:

Первое доказательство является схоластическим, и доказывает непротиворечивость искусственного интеллекта и Библии. По-видимому, даже люди далекие от религии, знают слова священного писания: «И создал Господь человека по образу и подобию своему …». Исходя из этих слов, мы можем заключить, что, поскольку Господь, во-первых, создал нас, а во-вторых, мы по своей сути подобны ему, то мы вполне можем создать кого-то по образу и подобию человека.

Создание нового разума биологическим путем для человека дело вполне привычное. Наблюдая за детьми, мы видим, что большую часть знаний они приобретают путем обучения, а не как заложенную в них заранее. Данное утверждение на современном уровне не доказано, но по внешним признакам все выглядит именно так.

То, что раньше казалось вершиной человеческого творчества - игра в шахматы, шашки, распознавание зрительных и звуковых образов, синтез новых технических решений, на практике оказалось не таким уж сложным делом (теперь работа ведется не на уровне возможности или невозможности реализации перечисленного, а о нахождении наиболее оптимального алгоритма). Теперь зачастую данные проблемы даже не относят к проблемам искусственного интеллекта. Есть надежда, что и полное моделирование мышления человека окажется не таким уж и сложным делом.

С проблемой воспроизведения своего мышления тесно смыкается проблема возможности самовоспроизведения.

Способность к самовоспроизведению долгое время считалась прерогативой живых организмов. Однако некоторые явления, происходящие в неживой природе (например, рост кристаллов, синтез сложных молекул копированием), очень похожи на самовоспроизведение. В начале 50-х годов Дж. фон Нейман занялся основательным изучением самовоспроизведения и заложил основы математической теории "самовоспроизводящихся автоматов" . Так же он доказал теоретически возможность их создания.

Существуют также различные неформальные доказательства возможности самовоспроизведения.Так, для программистов самым ярким доказательством, пожалуй, будет существование компьютерных вирусов.

Принципиальная возможность автоматизации решения интеллектуальных задач с помощью ЭВМ обеспечивается свойством алгоритмической универсальности. Что же это за свойство?

Алгоритмическая универсальность ЭВМ означает, что на них можно программно реализовывать (то есть представить в виде машинной программы) любыеалгоритмыпреобразованияинформации,–будь то вычислительные алгоритмы, алгоритмы управления, поиска доказательства теорем или композиции мелодий. При этом имеется в виду, что процессы, порождаемые этими алгоритмами, являются потенциально осуществимыми, то есть что они осуществимыв результатеконечногочисла элементарных операций. Практическая осуществимостьалгоритмов зависит от имеющихся в нашем распоряжении средств,которые могут меняться с развитием техники. Так, в связис появлением быстродействующих ЭВМ стали практически осуществимыми и такие алгоритмы, которые ранее были только потенциально осуществимыми.

Однако свойство алгоритмической универсальности не ограничивается констатацией того, что для всех известных алгоритмов оказывается возможной их программная реализация на ЭВМ. Содержание этого свойства имеет и характер прогноза на будущее: всякий раз, когда в будущем какое-либо предписание будет признано алгоритмом, то независимо от того, в какой форме и какими средствами это предписание будет первоначально выражено, его можно будет задать также в виде машинной программы.

Однако не следует думать, что вычислительные машины и роботы могут в принципе решать любые задачи. Анализ разнообразных задач привел математиков к замечательному открытию. Было строго доказано существование таких типов задач, для которых невозможен единый эффективный алгоритм, решающий все задачи данного типа; в этом смысле невозможно решение задач такого типа и с помощью вычислительных машин. Этот факт способствует лучшему пониманию того, что могут делать машины и чего они не могут сделать. В самом деле, утверждение об алгоритмической неразрешимости некоторого класса задач является не просто признанием того, что такой алгоритм нам не известен и никем еще не найден. Такое утверждение представляет собой одновременно и прогноз на все будущие времена о том, что подобного рода алгоритм нам не известен и никем не будет указан или, что он не существует.

Как же действует человек при решении таких задач? Похоже, что он просто-напросто игнорирует их, что, однако не мешает ему жить дальше. Другим путем является сужение условий универсальности задачи, когда она решается только для определенного подмножества начальных условий. И еще один путь заключается в том, что человек методом "научного тыка" расширяет множество доступных для себя элементарных операций (например, создает новые материалы, открывает новые месторождения или типы ядерных реакций).

Следующим философским вопросом искусственного интеллекта является цель создания. В принципе все, что мы делаем в практической жизни, обычно направлено на то, чтобы больше ничего не делать. Однако при достаточно высоком уровне жизни (большом количестве потенциальной энергии) человека на первые роли выступает уже не лень (в смысле желания экономить энергию), а поисковые инстинкты. Допустим, что человек сумел создать интеллект, превышающий свой собственный (пусть не качеством, так количеством). Что теперь будет с человечеством? Какую роль будет играть человек? Для чего он теперь нужен? Не станет ли он тупой и жирной свиньей? И вообще, нужно ли в принципе создание искусственного интеллекта?

По-видимому, самым приемлемым ответом на эти вопросы является концепция "усилителя интеллекта". Здесь будет уместна аналогия с президентом государства - он не обязан знать валентности ванадия или языка программирования Java для принятия решения о развитии ванадиевой промышленности. Каждый занимается своим делом - химик описывает технологический процесс, программист пишет программу; в конце концов, экономист говорит президенту, что вложив деньги в развитие информационных технологий, страна получит 20%, а в ванадиевую промышленность –10% годовых. При такой постановке вопроса любой человек сможет сделать правильный выбор.

В данном примере президент использует биологический усилитель интеллекта– группу специалистов. Но уже сейчас используются и неживые усилители интеллекта - например мы не могли бы предсказать погоду без компьютеров, при полетах космических кораблей с самого начала использовались бортовые счетно-решающие устройства. Кроме того, человек уже давно использует усилители силы - понятие, во многом аналогичное усилителю интеллекта. В качестве усилителей силы ему служат автомобили, краны, электродвигатели, прессы, пушки, самолеты и многое-многое другое.

Основным отличием усилителя интеллекта от усилителя силы является наличие воли. Ведь мы не сможем себе представить, чтобы вдруг серийный автомобиль "Запорожец" взбунтовался, и стал ездить так, как ему хочется. Не можем представить именно потому, что ему ничего не хочется, у него нет желаний. В тоже время, интеллектуальная система, вполне могла бы иметь свои желания, и поступать не так, как нам хотелось бы. Таким образом, перед нами встает еще одна проблема - проблема безопасности.

Данная проблема будоражит умы человечества еще со времен Карела Чапека, впервые употребившего термин "робот" . Немалую лепту в обсуждение данной проблемы внесли и другие писатели-фантасты. Как самые известные мы можем упомянуть серии рассказов писателя-фантаста и ученого Айзека Азимова, а так же довольно свежее произведение - "Терминатор". Кстати именно у Айзека Азимова можно найти самое проработанное, и принятое большинством людей решение проблемы безопасности. Речь идет о так называемых трех законах робототехники :

Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред.

Робот должен повиноваться командам, которые ему дает человек, кроме тех случаев, когда эти команды противоречат первому закону.

Робот должен заботиться о своей безопасности, насколько это не противоречит первому и второму закону.

На первый взгляд подобные законы, при их полном соблюдении, должны обеспечить безопасность человечества. Однако при внимательном рассмотрении возникают некоторые вопросы. Во-первых, законы сформулированы на человеческом языке, который не допускает простого их перевода в алгоритмическую форму. К примеру, перевести на любой из известных языков программирования, такой термин, как "причинить вред"или слово "допустить" на данном этапе развития информационных технологий не представляется возможным.

Далее предположим, что появилась возможность переформулировать данные законы на язык, который понимает автоматизированная система. Теперь интересно, что будет подразумевать система искусственного интеллекта под термином "вред" после долгих логических размышлений? Не решит ли она, что все существования человека это сплошной вред? Ведь он курит, пьет, с годами стареет и теряет здоровье, страдает. Не будет ли меньшим злом быстро прекратить эту цепь страданий? Конечно, можно ввести некоторые дополнения, связанные с ценностью жизни, свободой волеизъявления. Но это уже будут не те простые три закона, которые были в исходном варианте.

Следующим вопросом будет такой. Что решит система искусственного интеллекта в ситуации, когда спасение одной жизни возможно только за счет другой? Особенно интересны те случаи, когда система не имеет полной информации о том, кто есть кто.

Однако, несмотря на перечисленные проблемы, данные законы являются довольно неплохим неформальным базисом проверки надежности системы безопасности для систем искусственного интеллекта.

Так что же, неужели нет надежной системы безопасности? Если отталкиваться от концепции усилителя интеллекта, то можно предложить следующий вариант.

Согласно многочисленным опытам, несмотря на то, что мы не знаем точно, за что отвечает каждый отдельный нейрон в человеческом мозге, многим из наших эмоций обычно соответствует возбуждение группы нейронов (нейронный ансамбль) во вполне предсказуемой области. Были также проведены обратные эксперименты, когда раздражение определенной области вызывало желаемый результат. Это могли быть эмоции радости, угнетения, страха, агрессивности. Это наводит на мысль, что в принципе мы вполне могли бы вывести степень "довольности" организма наружу. В то же время, практически все известные механизмы адаптации и самонастройки (в первую очередь имеются в виду технические системы), базируются на принципах типа "хорошо" - "плохо". В математической интерпретации это сведение какой-либо функции к максимуму или к минимуму. Теперь представим себе, что усилитель интеллекта в качестве такой функции использует измеренную прямо или косвенно, степень удовольствия мозга человека-хозяина. Если принять меры, чтобы исключить самодеструктивную деятельность в состоянии депрессии, а так же предусмотреть другие особые состояния психики, то получим следующее.

Поскольку предполагается, что нормальный человек, не будет наносить вред самому себе, и, без особой на то причины, другим, а усилитель интеллекта является частью данного индивидуума (не обязательно физическая общность), то автоматически выполняются все три закона робототехники. При этом вопросы безопасности смещаются в область психологии и правоохранения, поскольку система (обученная) не будет делать ничего такого, чего бы ни хотел ее владелец.

И остался еще один вопрос - а стоит ли вообще создавать искусственный интеллект, может просто закрыть все работы в этой области? Единственное, что можно сказать по этому поводу - если искусственный интеллект возможно создать, то рано или поздно он будет создан. И лучше его создавать под контролем общественности, с тщательной проработкой вопросов безопасности, чем он будет создан лет через 100-150 каким-нибудь программистом-механиком-самоучкой, использующим достижения современной ему техники. Ведь сегодня, например, любой грамотный инженер, при наличии определенных денежных ресурсов и материалов, может изготовить атомную бомбу.

Список литературы

  1. Тьюринг, А. Может ли машина мыслить? (С приложением статьи Дж. фон Неймана "Общая и логическая теория автоматов" / А. Тьюринг; пер. и примечания Ю.В. Данилова. – М.: ГИФМЛ, 1960.
  2. Азимов, А. Я, робот. Все о роботах и робототехнике. Серия "Золотой фонд мировой фантастики" / А. Азимов. – М.:Эксмо, 2005.
  3. Шалютин, И.С. Искусственный интеллект: Гносеологический аспект / И.С. Шалютин. – М.: Мысль, 1985.

Никто не может предсказать, как поведут себя системы, созданные с помощью совершенного искусственного интеллекта. Тем не менее предположений много, рассмотрим в чем же заключается проблема искусственного итнеллекта .

Философская проблема искусственного интеллекта

Основная философская проблема в области искусственного интеллекта заключается в доведении возможности и целесообразности моделирования процесса мышления человека. Существует опасность тратить время на изучение того, что невозможно создать, в частности, на современном этапе развития человечества. Примером подобного времяпрепровождения может быть занятие научным коммунизмом — наукой, что на протяжении десятилетий изучала то, чего нет, и в обозримом будущем быть не может. Рассмотрим ряд доказательств, которые подводят к положительному ответу на вопрос возможности создания .

Первое доказательство выходит из области схоластики и говорит о непротиворечия искусственного интеллекта и Библии . Об этом говорят слова священного писания: «И создал Господь Бог человека по своему образу и подобию». Исходя из этих слов, можно утверждать, что, поскольку люди по своей сути подобные Творцу, то они вполне могут искусственным путем создать несколько по собственному образу и подобию.

Второй довод вытекает из успехов человечества, достигнутых в области создания нового разума биологическим путем. В 90-х годах прошлого столетия появилась возможность клонирования млекопитающих, начиная с овечки Долли. Дальнейшие достигнутые успехи в данном направлении заключаются в создании форм искусственной жизни, не имеющие никакого естественного экземпляра, к которому бы они были похожи. Например, кролики с дополнительным геном, что создает эффект светлячка. В отличие от клонов, эти формы в полной мере представляют собой искусственную жизнь . Вместе с тем, такие существа можно считать интеллектуальными, учитывая их способности к элементарному обучению. Поэтому они могут называться системами искусственного интеллекта, хотя несотворенным на основе использования средств вычислительной техники, которые представляют наибольший интерес для человечества.

Третий довод — это доказательство возможности самовоспроизведения объектов , состоящих из неживой материи. Способность к самовоспроизводству, как признак наличия интеллекта, долгое время считалась прерогативой живых организмов. Однако некоторые явления, происходящие в неживой природе, например, рост кристаллов, синтез сложных молекул через копирования, во многом идентичны самовоспроизводству.

Исследование искусственного интеллекта

В начале 50-х годов прошлого столетия Дж. фон Нейман занялся основательным изучением самовоспроизведения и заложил основы математической теории автоматов, «самовоспроизводящихся». Он также доказал теоретическую возможность управляемой инициализации самовоспроизведению. На сегодня, существует много различных неформальных доказательств возможности самовоспроизведения объектов, но для программистов наиболее существенный довод заключается в существовании компьютерных вирусов.

Четвертое доказательство — это существование принципиальной возможности автоматизации решения интеллектуальных задач с помощью вычислительной техники. Она обеспечивается ее свойством алгоритмической универсальности. Алгоритмическая универсальность вычислительных машин означает, что на них можно программно реализовывать любые алгоритмы преобразования информации: вычислительные алгоритмы, алгоритмы управления, поиска доказательства теорем и т.д. При этом, подразумевается, что процессы, порождаемые этими алгоритмами, являются потенциально осуществимыми, то есть, что они осуществляются в результате проведения конечного количества элементарных операций.

Практическая реализация алгоритмов зависит от существующих вычислительных мощностей, которые изменяются с развитием техники. В частности, вследствие появления быстродействующих компьютеров, стало практически возможным создание программных систем, способных реализовывать такие алгоритмы, которые ранее считались лишь потенциально осуществимыми.

Для обозначения программных систем, использующих искусственный интеллект, сложился общий срок — интеллектуальная система . Целесообразность создания интеллектуальных систем заключается в необходимости решения задач, которые не решаются на достаточном уровне эффективности программными системами, созданными на жесткой алгоритмической основе. К таким задачам относятся задачи, имеющие, как правило, следующие особенности:

  • у них неизвестный алгоритм решения — такие задачи носят названия интеллектуальных задач;
  • в них используется, помимо традиционных форматов данных, информация в виде графических изображений, рисунков, звуков;
  • в них предполагается наличие свободы выбора — то есть, отсутствие единого алгоритма решения задачи обусловливает необходимость сделать выбор между вариантами действий в условиях неопределенности.

Приведенный перечень задач формирует особенности интеллектуальных систем, предназначенных для их решения. Источником такого определения особенностей фактически является известный тест Тьюринга , предложенный британским математиком и одним из первых исследователей в области компьютерных наук Аланом Тьюрингом (Alan Turing). В данном тесте экспериментатор, обмениваясь сообщениями с подопытным объектом, пытается определить, кем он является на самом деле: человеком или компьютерной программой.

Интеллектуальная система, успешно прошла такой тест, считается сильным искусственным интеллектом. Термин «сильный искусственный интеллект» пропагандируется специалистами, которые считают, что искусственный интеллект должен базироваться на строгой логической основе. В отличие от сильного, слабый искусственный интеллект, по их мнению, базируется исключительно на одном из методов решения интеллектуальных задач (искусственных нейронных сетях, генетических алгоритмах, эволюционных методах). В наши дни стало очевидным, что ни один из методов искусственного интеллекта не позволяет успешно решить приемлемое количество задач — лучше проявляет себя использование комбинации методов.

Первая программа, прошедшая тест Тьюринга, была написана в ходе проведения психологических экспериментов Стивеном Вейценбаум (Steven Weizenbaum) в 1967 году. С тех пор уровень знаний в этой области значительно возрос, а способы взаимодействия экспериментатора с объектом исследования стали гораздо совершеннее. В наши времена проводятся отдельные соревнования с призовым фондом в сотни тысяч долларов США под названием: «Соревнование за приз Лебнера», в ходе которых определяется лучшая программа.

Не следует думать, что интеллектуальные системы могут, решать любые задачи. Математиками было доказано существование таких типов задач, для которых невозможен единый алгоритм, чтобы воспроизводил их эффективные решения. В этом контексте определяется невозможность решения задач такого типа с помощью интеллектуальных систем, разработанных для вычислительных машин. Кроме того, утверждение про алгоритмическую невозможность решения некоторого класса задач является одновременно и прогнозом на будущие времена, согласно которому алгоритмы их решения не будут найдены никогда.

Этот факт способствует лучшему пониманию того, где в современном мире могут найти свое практическое . В частности, для решения задачи, не имеет универсального алгоритма решения, целесообразно ее сужение до уровня, когда она решается только для определенного подмножества начальных условий. Такие решения по силам интеллектуальным системам, а их результат способен сузить, для человека, область вариантов интуитивного выбора.

В современном мире проблема создания искусственного интеллекта поднимается все чаще. То тут, то там промелькнут заметки в газетах, что, дескать, искусственный интеллект (ИИ) уже практически создан или применяется на практике в военных целях, космических исследованиях, медицине и т.д. Страсти накаляют и фантастические фильмы, повествующие о реальном существовании ИИ. В свете культовых фильмов "Матрица", "Терминатор", "Я - робот" телезритель приходит к однозначному умозаключению, что до создания ИИ осталось жить совсем недолго, и не пройдет и века, как судьбу человечества будет вершить какая-нибудь сложно организованная машина. Так ли это? Справедливы ли все эти домыслы? Возможно ли создание ИИ в принципе, и сколько осталось ждать, если возможно? На эти вопросы мы и постараемся дать сегодня ответ.

В целом понятие "искусственный интеллект" весьма расплывчато. Микрочипы не встроены сегодня разве что в лампочку, а изготовители всего и вся всерьез убеждают нас в существовании ИИ в их продукции. Если вкратце высказать общую мысль человечества по созданию ИИ, то это простое копирование человекоподобной линии поведения на искусственно созданном объекте для уменьшения затрат и времени человека. Для чего человеку ИИ? ИИ сможет частично или полностью заменить человека во многих специальностях и областях (космонавтика, рабочие специальности и т.д.). Кроме того, ИИ поможет человеку справиться с задачами, которые ему не под силу (сложные вычисления и анализ) и попросту расширит данный ему природой интеллект.

Для полного представления картины начнем с базовых понятий. Термин интеллект (intelligence) происходит от латинского понятия intellectus - ум, разум, рассудок. Искусственный интеллект (artificial intelligence - AI) понимается как способность автоматических систем брать на себя функции человека, выбирать и принимать оптимальные решения на основе ранее полученного жизненного опыта и анализа внешних воздействий. Любой интеллект опирается на деятельность. Деятельность мозга - это мышление. Интеллект и мышление связаны многими целями и задачами: распознавание ситуаций, логический анализ, планирование поведения. Характерными особенностями интеллекта являются способность к обучению, обобщению, накоплению опыта, адаптация к изменяющимся условиям в процессе решения задач. Исходя из самого определения ИИ вытекает основная проблема в создании интеллекта: возможность или невозможность моделирования мышления взрослого человека или ребенка. Если на этот вопрос будет дан отрицательный ответ, то сама идея ИИ теряет смысл в корне.

История развития искусственного интеллекта

Самыми первыми интеллектуальными задачами, в которых стал применяться ИИ (точнее, некое его подобие), стали логические игры (шашки, шахматы) и арифметические операции (решение уравнений, доказательство теорем), а также некоторые простые игрушки. Примером последних может быть электронная мышка, способная исследовать лабиринт и находить из него выход (в ее основе лежала простейшая релейная схема). Первые серьезные исследования относительно создания ИИ были предприняты практически сразу после появления первых ЭВМ. В 1954 году американцы А. Ньюэлл, Дж. Шоу, Г. Саймон и голландец А. Де Гроот совместно создали первый в истории человечества символьный язык программирования ИПЛ1 и в 1957 году написали на нем программу для игры в шахматы. В 1960 г. этой же группой была написана программа GPS (General Problem Slover) - универсальный решатель задач. Программа могла справиться с рядом головоломок, решением интегралов и некоторыми другими задачами. В 1962 году кибернетиком А. Самуэлем была создана программа для игры в шашки. Она была столь успешной, что смогла выиграть у сильнейшего шашиста США Р. Нили. В конце 60-х годов появились первые игровые программы, системы для элементарного анализа текста и решения математических задач. Уже тогда стала известна основная проблема ИИ: программа, которая играет в шахматы, никогда не будет играть в шашки или домино. Разработчики поняли и еще одно: всем написанным программам не достает самого важного - знаний в соответствующих областях. Эти вопросы исследователи стремились решить в следующем десятилетии. В 1974 году состоялся международный шахматный турнир электронных машин. Возгордитесь же! Победу в нем одержала советская машина с шахматной программой "Каисса". Позже программа с подобным ИИ победила всемирного гроссмейстера Г. Каспарова. Конфигурация компьютера была такова: 256 процессоров с 4 Гб дисковой памяти и 128 Мб ОЗУ каждый. К середине 70-х появляются первые интеллектуальные программы, использующие различные способы представления знаний для решения задач - экспертные системы. Одной из первых была экспертная система DENDRAL, предназначенная для составления формул химических соединений на основе спектрального анализа. В 1957 г. американец Ф. Розенблатт предложил модель зрительного восприятия и распознавания - перцептрон. Перцептрон был способен работать в двух режимах: обучение и распознавание. В режиме обучения человек предъявлял объекты и объяснял машине, к какому классу каждый из них принадлежит (описание объекта). Затем в процессе распознавания машине предъявлялись новые объекты, и машина должна была их классифицировать правильно. Достаточно большой интерес с точки зрения ИИ представляет программа математика Хао Ванга, которая за 3 минуты работы на IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8,5 мин. выдала доказательство еще 130 более сложных теорем, часть которых к тому времени еще не была выведена математиками. Позже были созданы другие экспертные системы ИИ: MYCIN (предназначена для диагностики и лечения инфекционных заболеваний крови), PROSPECTOR (прогнозирует залежи полезных ископаемых), SIMER (система оценки качества воды), CASENET (диагностика и лечение глаукомы) и др.

Сегодня разработка систем ИИ продолжается еще более интенсивными темпами. Над этой проблемой работают крупнейшие мировые институты. ВМС США разрабатывают автоматические роботизированные системы Stryker и им подобные для автономного ведения боя; исследовательские лаборатории молекулярных биологов всего мира пользуются плодами сложных разработок ИИ - автоматическими методиками ПЦР (полимеразная цепная реакция для исследования ДНК), ИФА (иммуно-ферментный анализ для анализа белков), автомобилестроители - разработками ИИ для точной настройки двигателей и других частей автомобилей. Одним словом, история создания искусственного интеллекта продолжается...

Суть процесса искусственного мышления

Если быть максимально кратким, то суть процесса мышления заключается в следующем: по мере наращивания своего мировосприятия человек либо автоматическое устройство приобретает все большие возможности для воспроизводства собственных умозаключений. Эти умозаключения генерируются при решении задач для определения способа достижения поставленной цели. Для этого обычно необходимо выстроить логическую цепочку, начинающуюся на мировосприятии и заканчивающуюся на конкретной цели. Если задача обратна, то цепочку необходимо строить с цели. Сегодня существуют различные принципы построения систем искусственного интеллекта. Среди них - моделирование рассуждений на основе прецедентов (case-base reasoning - CBR), моделирование рассуждений с неопределенностью, рассуждения о действиях и изменениях и т.д. К примеру, в основе CBR - принципа построения ИИ - лежит выбор проблемы, поиск алгоритмов адаптации, поиск прошлого опыта, вывод, основанный на оценке сходства. После установки цели система должна рассмотреть множество случаев и вариантов решения проблемы, а затем выработать искомое решение. Методы построения CBR-интеллекта уже применяются для разработки товаров массового спроса, в медицине и смежных областях, в электронной коммерции и конструировании программ. В большинстве своем все работы по созданию ИИ весьма сложны и проводятся самыми развитыми институтами различных стран мира.

Суть реализации ИИ в теории и на практике

Суть реализации мышления до сих пор до конца не выяснена и остается тайной для науки. Однако наука часто путается сама с определением понятия мышления и путает нас. Как часто газетные и книжные публикации заверяют нас в том, что, раз компьютеры хранят и перерабатывают информацию, то, значит, они способны думать и мыслить. Увы, но люди, написавшие это, абсолютно не представляют себе всю сложность процесса мышления. Да, действительно объемы компьютерной информации реальны. Но эти объемы характеризуют не количество информации в сообщениях как таковой, а количество ячеек машинной памяти, которые они занимают. Сегодня компьютеры перерабатывают в большинстве своем не саму информацию, а всего лишь содержимое ячеек своей памяти (а их можно заполнить чем угодно). Таким образом, вывод напрашивается сам: компьютеры не "осмысливают" содержимое информации. В отличие от компьютеров, для людей характерны исключительно осмысленные понятия. Образно можно сказать, что у людей процесс мышления происходит в душе, в то время как для машин ее не существует.
Из каких компонентов обычно строится система искусственного интеллекта, да и любого интеллекта вообще? В первую очередь ИИ - это совокупность "железа" и программного обеспечения для него. В качестве первого обычно выступает компьютер определенной конфигурации и обслуживающие механизмы (манипуляторы, видеокамеры, звуковые и другие датчики). В большей степени на "интеллектуальность" машины в целом влияет именно программная начинка. Именно она определяет степень "продвинутости" данного ИИ.

В электронной начинке ИИ в первую очередь присутствует огромное количество памяти, на основе которой и строятся все рассуждения и выводы. Понятно, что все знания из различных областей в память ИИ заложить невозможно, но сделать интеллектуальную систему в определенной области познания вполне возможно. Обычно человек изначально закладывает в систему минимальные познания о мире. Далее эти познания расширяются в процессе накопления опыта и вложения его человеком (пассивный путь) либо самой системой (активный путь) в результате ее адаптации к условиям окружающей среды. Однако компьютерная память представляет собой лишь простую совокупность файлов и папок. Память человека устроена гораздо более сложно - она оперирует не файлами и их группами, не клочками информации. Человеческая память - это память образов. Человеческую память можно сравнить с летящей кометой: позади - длинный "хвост" жизненного опыта, который со временем автоматически забывается и затирается новым; сама комета - это слой реальной ежесекундной памяти; тонкий передний слой - это туманные соображения (предвидение) человеческого будущего. Как видим, память систем ИИ пока в корне отличается от человеческой. Во вторую очередь сам логический процесс просчета ситуации происходит в устройстве обработки информации. Чаще всего это определенное программное обеспечение + центральный процессор компьютера. От возможностей этого центра обработки информации напрямую зависит производительность и активность ИИ.

Самым главным отличием программного обеспечения настоящего искусственного интеллекта от простых приложений заключается возможность "мыслить" образами. С помощью образного мышления сегодня стали доступны такие технологии, как сжатие и кодирование информации, обработка биометрических образов, оптимизация гаммы цветопередачи, образный поиск, анализ смысла изображений, автоматическая каталогизация информации, алгоритмы распознавания и классификации образов. Для человека примерами образов могут быть небо, облака, музыка, море, стихи и т.д. Способность восприятия внешнего мира в форме образов позволяет людям узнавать бесконечно большое число объектов и понимать друг друга независимо от национальной принадлежности. Процесс восприятия объекта как образа для машины имеет некоторые особенности. Обычно перед выделением образа (например, графического) заранее считается известным лишь то, что требуется разделить общность точек некоторого пространства на две или более областей, и что после разделения все точки будут принадлежать этим двум (или более) областям. При этом заранее известно только расположение точек исходной области (их примерные координаты). Далее происходит сам процесс разделения точек на области (образы) по каким-либо критериям (для изображения это будет смена цветов и контрастов). Иногда требуется обработать изображение так, чтобы точки были более явными для разделения (например, перевести цветное изображение в черно-белое) - это сделает чувствительность разделения выше (так работает большинство программ для распознавания текста). Если система сможет самостоятельно классифицировать и отфильтровывать не только ранее известные объекты, но и неизвестные (не зная их свойств, по внешнему виду), то этот процесс будет называться самообучением. Сегодня системы ИИ могут различать только немногочисленные образы в небольших заданных пространствах.

Важной особенностью ИИ сегодня должно стать их обучение. Над этой проблемой работают сегодня многочисленные ученые во всем мире. Обучение обычно определяется как процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные внешние воздействия. Сегодня существуют прототипы оборудования, способные обучаться простейшим механическим операциям (обработка деталей на станке, копирование человеческой походки). Однако достижения в сфере обучения ИИ пока продвигаются довольно низкими темпами и не поспевают за развитием электроники.
Для решения той или иной задачи ИИ сегодня необходим алгоритм решения (впрочем, как и любому человеку). Алгоритм - это точное предписание о выполнении в определенном порядке операций для решения определенной задачи. Нахождение алгоритма для человека или машины связано с тонкими и сложными рассуждениями. Эти рассуждения часто требуют изобретательности и творческого подхода, поэтому машина постоянно нуждается во взаимодействии с человеком за неимением вышеуказанных качеств. Машине не свойственен "метод тыка" - она сегодня всего лишь ищет варианты решения проблемы из прописанных в базе данных. Важную роль в функционировании ИИ выполняют функции анализа информации и накопления жизненного опыта. Наблюдая за детьми, мы убеждаемся, что большую часть знаний они получают путем обучения и общения с окружающим миром, а не в качестве заложенных в них заранее. Изобретение эффективного механизма самоанализа и самостоятельного накопления жизненного опыта поставит ИИ на значительно более высокий уровень по сравнению с современным.

Сегодня интеллектуальные программы наподобие Copernic или системы распознавания образов установлены практически на каждом ПК. Проанализируем существующие системы ИИ на примерах программ распознавания графических образов и речи. Если говорить о восприятии и обработке речи, то программное обеспечение от Dragon Systems практически уже решило этот вопрос. Speech SDK от Microsoft также позволяет обеспечить приемлемое качество диктовки текста. Устойчивое распознавание слов и целых фраз достигается после нескольких часов тренировки и адаптации к манере произношения пользователя. При этом качество распознавания близко к 95% (сравнимо с качеством распознавания речи у человека). В основе принципа действия подобных программ лежит математическая модель преобразования акустических сигналов и графических изображений в числовые последовательности, каждой из которых соответствует определенное слово или графическая информация из программного словаря (к примеру, так работают программы Cuneiform, Fine Reader). Однако, в отличие от человека, данные программы всего лишь УЗНАЮТ слово или изображение, но не ОСМЫСЛИВАЮТ его. Это отличие является пока непреодолимой пропастью между интеллектом компьютера и человека и не позволяет создать действительно ДУМАЮЩИЙ искусственный интеллект.

Реальные возможности и достоинства искусственного интеллекта

В последнее время можно проследить постепенное превращение программной инженерии в интеллектуальную инженерию, рассматривающую более общие проблемы обработки информации и предоставления знаний. Для определения реальных возможностей развития ИИ рассмотрим перспективные подходы к организации систем ИИ, а заодно и вплотную подойдем к возможностям искусственного интеллекта сегодня.

Нейронные сети. Искусственные нейронные сети пришли к нам из биологии. Они образованы из элементов, возможности которых аналогичны большинству элементарных функций биологического нейрона - нервной клетки. Нейроны в сети выстраиваются в цепи, соединяются. Искусственные нейронные сети демонстрируют большое число свойств, присущих мозгу человека. Они обучаются на основе опыта, обобщают свой опыт, способны выделять главное из поступающей информации. Способность нейронной сети к обучению впервые была исследована Дж. Маккалоком и У. Питтом в опытах 1943 года на созданной ими модели нейрона. Авторы описали принципы построение нейронных сетей. Позже, в 1962 году, Ф. Розенблатт предложил свою модель нейронной сети - перцептрон, а в 1986 г. Дж. Хинтон и его коллеги опубликовали статью с описанием модели нейронной сети и алгоритмом ее обучения, что дало толчок к эффективному изучению нейронных сетей. Если рассматривать строение искусственной нейронной сети, то проще сделать это на примере биологической модели. Нейрон состоит из нескольких входов (дендритов) и одного выхода (аксон). В теле нейрона происходит взвешенное суммирование возбуждения на входах (дендритах), обработка и изменение уровня сигнала на выходе (аксоне) в зависимости от результата обработки поступивших сигналов. Будучи соединенными определенным образом, нейроны образуют нейронную сеть. Для моделей, построенных по типу нейронных сетей человеческого мозга, характерно легкое распараллеливание алгоритмов и высокая производительность. С человеческим мозгом их сближает также еще одно очень важное свойство, напрочь отсутствующее у простых электронных машин: нейронные сети работают даже при условии неполной информации об окружающей среде, т.е., как и человек, они могут отвечать не только "да" или "нет", но и "не знаю точно, но скорее да". Наиболее яркий пример применения сетей - проект Smart Sensor Web военного научного агентства DARPA. Он представляет собой сеть разнообразных датчиков, работающих совместно на поле боя. Каждый объект - источник данных: визуальных, цифровых, электромагнитных, химических, инфракрасных. При использовании данной нейронной сети возможно распознавание целей, анализ и предсказание сбоев техники. Сейчас продолжается совершенствование методов синхронной работы нейронных сетей на параллельных устройствах. Нейронным сетям сегодня под силу распознавание сигналов, речи, изображений, поиск данных, финансовое прогнозирование, шифрование данных. Нейросетевой подход используется в большом количестве задач - для кластеризации информации из Интернета, для имитации и моделирования сложно устроенного человеческого мозга, для распознавания образов и др. К достоинствам нейронных сетей можно отнести самонастраиваемость, гибкость конфигурирования, достаточно высокую эффективность, самообучаемость. Коль уж заговорили об Интернете, то специалисты считают, что в будущем именно он будет определять уклад и занятия отдыхающего человека (цифровое телевидение, универсальная библиотека, игры и т.д.) и, вероятно, в конце концов станет бесплатным (либо условно платным). Сегодня системы ИИ активно используются и в Интернете: это поисковые машины, обладающие примитивными признаками интеллекта и способные в считанные секунды находить и предоставлять информацию (rambler.ru и др.); разнообразные интеллектуальные датчики, призванные посредством сети предупредить об ограблении или пожаре, и т.д. Среди наиболее известных сегодня нейронных сетей выделяют сети Хопфилда, нейронные сети с обратным распространением ошибки и стохастические нейронные сети.

В связи с тем, что в последнее время эффективность обработки информации требует высоких тактовых частот процессоров (а они, как известно, пока уперлись в свой реальный частотный потолок около 4 ГГц), все чаще для повышения эффективности обработки используется многоядерность. Распространение сетей и создание высокопроизводительных кластеров все чаще вызывает интерес к вопросам распределения вычислений: оптимальная загрузка процессоров, гибкое самоконфигурирование, балансировка ресурсов, максимальный самоконтроль. Как тут обойтись без искусственного интеллекта? В свете последних событий в голову приходит мысль о принципиально новых процессорах СЕLL, построенных по принципу многоядерности и обладающих колоссальной производительностью. Возможно, они способны будут в будущем заменить многие серверные сети на современных процессорах. Робототехника. У каждого человека есть стремление максимально облегчить свой труд. Робототехника - это весьма перспективное на сегодня развитие формы ИИ. Поскольку работу мышц можно заменить только работой других приспособлений, человек не преминул этим воспользоваться - на многих заводах вместо людей сегодня трудятся роботы. Первых роботов трудно было назвать интеллектуалами. Только в конце 60-х годов были сконструированы роботы, управлявшиеся компьютерами. К примеру, в результате разработки проекта "Промышленный интеллектуальный робот" в Японии в 1969 году был собран робот с элементами ИИ для выполнения сборочно-монтажных работ с визуальным контролем. Манипулятор робота имел 6 степеней свободы и был оснащен тактильными датчиками. Зрение робота было организовано посредством двух видеокамер, снабженных светофильтрами для распознавания цвета предметов. Робот был способен грубо определять область, занимаемую интересующим предметом, и грубо распознавать простые предметы. Постепенно характеристики роботов значительно улучшились, и сегодня точности их работы позавидует любой человек (достаточно вспомнить лазерные роботизированные механизмы для изготовления микросхем или процессоров). Фирмой Epson изобретены даже летающие прототипы роботов. Сегодня в США планируется к 2005 году перевести довольно большую часть вооруженных сил на роботизированную основу. Внимание общественности привлекают ежегодные соревнования роботов-машин, передвигающихся по пересеченной местности, пользуясь при этом только картой. Эти сложно организованные механизмы способны самостоятельно принимать решения по координации передвижения и имеют для этого в составе примитивный ИИ с датчиками наклона автомобиля, радиомаяком, компасом, дальномером, инфракрасными и другими датчиками мониторинга движения. В США последнее время ведутся разработки по машинному обучению, навигации роботов, логическому планированию их действий и т.д.

Экспертные системы. Сегодня общество интересуют системы принятия решений в реальном времени, средства хранения, извлечения, анализа и моделирования знаний, системы динамического планирования. Среди них уже сегодня имеются конкретные результаты:
DENDRAL - высокоинтеллектуальная система распознавания химических структур. Это старейшая из экспертных программ. Первые версии данной системы появились еще в 1965 году. Пользователь задает системе DENDRAL некоторую информацию о веществе, а также данные спектрометрии (инфракрасной, ядерного магнитного резонанса и масс-спектрометрии), и та в свою очередь выдает диагноз в виде соответствующей химической структуры. MICIN - экспертная система медицинской диагностики. Она разработана группой по инфекционным заболеваниям Стенфордского университета. Программа ставит соответствующий диагноз, исходя из представленных ей симптомов, и рекомендует курс медикаментозного лечения любой из диагностированных инфекций.
PUFF - система анализа нарушения дыхания человека. Она представляет собой MICIN, из которой удалили данные по инфекциям и вставили данные о легочных заболеваниях.
PROSPECTOR - система, созданная для содействия поиску коммерчески оправданных месторождений полезных ископаемых.
Машинное обучение и самообучение. Этому вопросу уделяется сегодня огромное, если не главное, внимание в сфере искусственного интеллекта. Существует множество алгоритмов машинного обучения. Один из самых распространенных - алгоритмы класса С4. Эти алгоритмы позволяют выстраивать сложное древо решений и анализировать его. С каждой ветвью древа ассоциируется определенный класс примеров решения проблемы. В процессе решения классы могут разбиваться на подклассы. Завершение работы алгоритма - принятие того или иного решения, удовлетворяющего потребностям задачи. Недостаток такого алгоритма - ограниченность примеров решения проблемы.

Интеллектуальный анализ данных и обработка статистической информации. Сравнительно новое направление применения ИИ. Сюда относят процесс обнаружения ИИ закономерностей в исходной информации, выделение этих закономерностей, построение определенной модели для анализа информации, а затем прогнозирование результатов исследования на будущее и представление в виде графической информации. Это весьма перспективное направление ИИ уже реально применяется на различных биржах и в маркетинговой деятельности.

Системы автоматического планирования поведения. Таковые реально применяются сегодня на космических кораблях при освоении космоса и в батискафах для изучения глубин морского дна. Одним словом, это та область применения ИИ, где не допускается присутствие человека в принципе либо его вмешательство должно быть незначительным. Современные системы планирования поведения - это устройства с высокой степенью автономности и детальным целенаправленным поведением.
Агентные системы - очень молодое направление ИИ. Под таковыми понимают специальные программы-агенты, нацеленные на исследование коллективной аудитории и обладающие автономностью (абсолютно самостоятельная программа), социальностью (способна общаться с человеком), реактивностью (способна воспринимать окружающую среду, адекватно реагировать на ее изменения) и активностью (агенты могут характеризоваться целенаправленность поведения и проявлять инициативу). Подобные программы представляют огромный интерес для коммерческой и промышленной деятельности (маркетинг, телевидение, реклама), в военном деле (системы управления войсками), в системах управления транспортом и электронными сетями, где уже успешно применяются.
Самоорганизующиеся СУБД. Эти базы данных способны гибко подстраиваться под профиль конкретной задачи и практически не требуют вмешательства извне.
Автоматический анализ языков. Сюда относят поиск по словарям, распознавание языков, перевод, выявление незнакомых слов, лексику, грамматику и т.д.
Медицинские системы для выполнения точных операций и консультирования врачей в сложных ситуациях; роботы-манипуляторы для проведения операций повышенной точности (например, на сетчатке глаза).
Создание полностью автоматизированных заводов с заменой людей (особенно работа в условиях повышенной опасности). Таковые прототипы уже давно имеются. Большинство поточных линий на современных заводах микроэлектронной и других промышленностей нуждаются всего лишь в нескольких операторах-настройщиках, а всю работу по сборке и упаковке продукции выполняют роботы.
Одна из интереснейших и полезных сторон применения ИИ - разработка игр, развлекательных программ и систем искусственного общения с человеком. Большую долю здесь занимает моделирование социального поведения, общения, человеческих эмоций, творчества. Это одно из сложнейших направлений разработки ИИ и в то же время - одно из самых перспективных.

Современные системы искусственного интеллекта способны освоить гораздо больше специальностей, чем простой человек, благодаря значительно большему числу разнообразных датчиков информации и приспособлений. Эти воспринимающие датчики были созданы по типу строения органов чувств человека. К примеру, система зрения человека организована следующим образом: глаз (оптико-воспринимающая часть системы) -> нервные передающие волокна -> воспринимающие и анализирующие участки головного мозга (зрительные бугры мозга и участки коры полушарий). Теперь сравните эту систему со зрительной системой роботов: камера (система линз + фоточувствительная матрица) -> провода, передающие сигнал -> контроллер материнской платы с софтом для декодирования и анализа зрительной информации. Сравните эти две схемы. Нашли разницу? По сути, ее почти нет, наблюдается практически стопроцентное сходство. Разница только в том, что системы ИИ сегодня, в отличие от человека, могут воспринимать инфракрасный свет, ультрафиолет, видеть в полной темноте, слышать во всем диапазоне звуковых волн, производить передвижения с очень высокой точностью (до микрона), чувствуют изменения электромагнитого поля, магнитного поля земли, давления, напряжения электричества, никогда не засыпают и не чувствуют усталости. Разработки ИИ применяется сегодня в качестве автономных секретарей, поисковых машин (google.ru в Интернете), планировщиков работ, профессиональных учителей, продавцов. Также предполагается использование в дальнейшем систем ИИ во всевозможных бытовых приборах: уборщиках помещений; агрегатах для приготовления, доставки и заказа пищи; автоматических водителях автомобилей и т.д.
Однако не следует думать, что ЭВМ или роботы смогут решать любые задачи. Учеными доказано существование таких типов задач, для решения которых невозможен единый эффективный алгоритм (к примеру, сложные жизненные ситуации). Человек часто методом "научного тыка" расширяет для себя зону познания о природе, открывает новые законы. Компьютерному искусственному интеллекту это абсолютно несвойственно. В связи с этим поговорим о недостатках современных систем искусственного интеллекта.

Недостатки и проблемы современного искусственного интеллекта

Сегодня мы имеем возможность наблюдать постоянный рост вычислительной мощности компьютеров. Означает ли это появление у них ИИ? Отнюдь! К сожалению, даже принципы работы человеческой психики сегодня остаются неясными. А поскольку ИИ изначально задумывался как прообраз человека, то создание его сопряжено с неизвестностью. Однако рост производительности ПК в сочетании с повышением качества алгоритмов обработки делает возможным применение различных научных методов на практике в различных сторонах жизни человечества. Рассмотрим основные проблемы, связанные с разработкой ИИ на практике.

Большинство современных разработок ИИ используют несколько типов понятий: да (хорошо) и нет (плохо). В математике и электронике это нормально, но в жизни точные понятия пригождаются редко. Поскольку изначально ИИ задумывается как человекоподобный интеллект, служащий дополнением человеку, то угодить этому самому человеку будет очень нелегко. Как, к примеру, машине понять депрессивное состояние или эйфорию человека? Понятия "веселый" и "грустный" для машины здесь никак не подходят.
Проблемы в разработке ИИ прослеживаются и на уровне формирования образов и образной памяти. Поскольку образы в мышлении человека взаимопроникают друг в друга, то формирование образных цепочек у людей не представляет сложности - оно ассоциативно. Файлы же, в противоположность образам, есть обособленные пакеты машинной памяти. В памяти человека поиск данных ведется не по самому содержимому памяти, а вдоль готовых цепочек ассоциативных связок. Компьютер же ищет только конкретные файлы и папки. Пример: для человека не проблема узнать лицо друга на фотографии, даже если он похудеет или поправится, т.к. это яркий пример ассоциативной памяти. Для машины это практически невозможно. Она не сможет отличить главное от второстепенного.

Для получения результата ИИ использует только определенную базу известных данных. Ему несвойственен эксперимент.
Проблема перевода с одного языка на другой, а также обучения машины языку. Если вы предложите современным программам-переводчикам (например, Promt) перевести любой абзац из книги на другой язык, то поймете, что качеством здесь и не пахнет. В результате вы получите простой набор слов. Почему? Потому, что для перевода целых предложений необходимо понимать смысл предложения, а не просто переводить слова. Современные ИИ-программы смысл в тексте выделять пока не могут (вероятно, потому, что посредником для перевода, скажем, с французского на русский, является бездушный машинный язык - язык единиц и нолей).
Простота математических расчетов. В последнее время многими ведущими специалистами в области ИИ внесено предложение по исключению из списка высокоинтеллектуальных задач простого алгебраического решения уравнений, т.к. для этого сегодня имеются стандартные последовательные алгоритмы расчета. Это не требует сложных, многоэтапных и часто непоследовательных интеллектуальных способностей. Распознавание текста, игра в шахматы, напротив, требуют разбиения процесса на части и поиска решения из многочисленных возможных вариантов. Более того: даже распознавание текста, игра в шахматы и шашки, распознавание звуков на сегодня успешно применяются на практике, и их не принято возводить в ранг проблем ИИ. Современные разработки, связанные с искусственным интеллектом, неспособны к самокопированию (размножению). Это действительно так. На современном этапе развития кибернетики и электроники абсолютно самостоятельное самокопирование роботов невозможно, необходимо хотя бы частичное (часто значительное) вмешательство человека. Однако для программ этот процесс абсолютно прост - что стоит утилите самостоятельно копироваться в другую директорию? Ярким примером может стать "болезнь" современного Интернета - компьютерные и мобильные вирусы. Они способны к бесконтрольному размножению и значительно портят нам жизнь.

Еще одна проблема на пути к созданию ИИ - отсутствие у оного всякого проявления воли. Как это ни странно звучит, но у современных ПК есть колоссальные возможности к сложным расчетам, но абсолютно отсутствуют какие-либо желания. Даже если вы снабдите свой ПК микрофоном и акустикой, это абсолютно не значит, что он начнет самостоятельно писать музыку или самопроизвольно запускать какие-либо приложения. Он не ленивый - просто у него нет желаний. Компьютеру все равно, кто с ним работает, зачем и с какой целью.

У современных прототипов ИИ отсутствуют стимулы к дальнейшему совершенствованию. Дело в том, что в природе на любой живой организм действует фактор естественного отбора, порождающий постоянное приспособление к условиям окружающей среды. Голод, стремление выжить и дать потомство - вот факторы, постоянно действующие на живой огранизм. Они действуют как стимул к дальнейшему совершенствованию. Мотивация большинства современных ИИ весьма примитивна: человек задал задачу - машина ее выполняет без вариантов и эмоций. Теоретически на мотивацию и совершенствование может повлиять введение обратных связей компьютер -> человек и создание улучшенной системы самообучаемости машины. Правда, это только теория - на практике же все оказывается намного сложнее. Однако подобная работа уже проводится. В качестве стимула выбрано элементарное чувство голода - предвестник скорого окончания энергетических ресурсов и, соответственно, существования машины. Американец С. Вилкинсон создал "гастроробота" по имени "Жуй-жуй". Машина питается сахаром, и основой ее поведения является исследование окружающего мира в поисках съестного. Тело "Жуй-жуя" состоит из трех тележек, а чувство голода является его постоянным спутником, поскольку аккумуляторы постоянно требуют перезарядки. Проблемой являются частые ошибки этого "зверя" в выборе продуктов питания.

Некоторая примитивность искусственных нейронных сетей. Искусственные нейронные сети демонстрируют сегодня удивительные преимущества, присущие человеческому мозгу. Они обучаются на основе личного опыта, обобщают происходящее, самоконфигурируются, извлекают главное из поступающей информации с лишними данными. Однако даже самые развитые искусственные сети не могут дублировать функции человеческого мозга. Реальный интеллект, демонстрируемый сегодня самыми сложно устроенными нейронными сетями, находится ниже уровня развития интеллекта дождевого червя. Неэффективность искусственного интеллекта в военных целях. В последнее время в СМИ довольно часто появляются новости о создании ИИ в военных целях. Однако в реальности перед создателями подобных машин-роботов стоят очень сложные и часто неразрешимые задачи. Прежде всего это недостатки систем автоматического распознавания, неспособных самообучаться и адекватно анализировать информацию в режиме реального времени (принимать нужные решения в нужную минуту). Такой боевой машине очень тяжело, а скорее всего - практически невозможно, будет отличить на поле боя своих от чужих (весьма забавная ситуация, не правда ли:)). Также пока не разработано алгоритмов работы подобных устройств в условиях незнакомой местности и резко изменяющейся ситуации. Подобные боевые единицы способны сегодня максимум к простому дистанционному управлению. Более выдающиеся результаты достигнуты военными в прикладных направлениях: точное распознавание речи и тембра голоса, разнообразные "детекторы лжи", создание консультационных систем (снижение однотипных действий и нагрузки на пилотов в режиме реального полета), системы низкоуровневого анализа изображения, получаемого от видеокамеры, и т.д. Помимо этого, сегодня создано достаточно большое количество приборов с подобием ИИ, призванных усовершенствовать работу вооруженных сил: разнообразные интеллектуальные сонары и радары для обнаружения целей, спутниковая система позиционирования для точного координирования локализации войск и их передвижения, разнообразные системы навигации в судоходстве.

Выводы

Сегодня продолжается внедрение логики в прикладные области и программы. Программ глобального масштаба, способных хоть в какой-то мере соответствовать реальному человеку, вести процесс разумного мышления и общения, пока нет и в ближайшем времени не предвидится (слишком много существует преград и неразрешимых проблем). Сегодня компьютер выполняет только точные указания, которые ему даст человек. При написании любого приложения программист пользуется языком высокого уровня, затем программа-транслятор переводит это приложение на машинный язык директив, который и понимает процессор компьютера. Поэтому становится понятно, что сам по себе компьютер к мышлению неспособен в принципе, но высокоуровневые программы относительно интеллектуальны.

Делая вывод из всего сказанного, можно сказать, что высокоинтеллектуальное мышление - это свойство не ВЫСОКООРГАНИЗОВАННОЙ МАТЕРИИ, а свойство ВЫСОКООРГАНИЗОВАННОЙ ДУШИ. Животные и человек способны ставить и решать задачи. Компьютеры - устройства неодушевленные. Их сегодня очеловечивают программисты, а машины лишь следуют их указаниям. К сожалению, как бы ни была сложна по устройству современная программа, какие бы сложные алгоритмы ни были бы в нее заложены, в конечном итоге она не сможет сделать ничего помимо того, что не предусмотрено ее автором. Возможно, в будущем что-то и изменится, но не сегодня...

Ученые пытаются приоткрыть завесу отдаленного будущего. Возможно ли создание искусственного интеллекта? Можно ли создать такие человекоподобные системы, которые смогут мыслить абстрактными образами, будут самокопироваться, самообучаться, корректно реагировать на изменения окружающей среды, обладать чувствами, волей, желаниями? Можно ли создать соответствующие алгоритмы? Сможет ли человечество контролировать такие объекты? К сожалению, ответов на эти вопросы пока нет. Остается надеяться на то, что, если искусственный интеллект можно создать в принципе, то рано или поздно он будет создан.

Анализ проблемы искусственного интеллекта открывает роль таких философских познавательных орудий, как категории, специфическая семиотическая система, логические структуры, ранее накопленное знание. Всё это обнаруживаются не посредством исследования физиологических или психологических механизмов познавательного процесса, но выявляется в знании, в его языковом выражении. Орудия познания, формирующиеся, в конечном счёте на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактного мышления, независимо от её конкретного материального субстрата и структуры. Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления (т. е. в конечном счёте, формирующую адекватные схемы внешних действий в существенно меняющихся средах) необходимо наделить такую систему этими орудиями. Развитие систем ИИ за последние время как раз идёт по этому пути.

Степень продвижения в данном направлении в отношении каждого из указанных познавательных орудий разная, но в целом пока, увы, незначительна.

В наибольшей мере системы ИИ используют формально-логические структуры, что обусловлено их неспецифичностью для мышления и, в сущности, алгоритмическим характером. Это дает возможность относительно легкой их технической реализации. Но даже здесь кибернетике предстоит пройти большой путь. В системах искусственного интеллекта ещё слабо используются модальная, императивная, вопросная и иные логики, которые функционируют в человеческом интеллекте, и не менее необходимы для успешных познавательных процессов, чем давно освоенные логикой, а затем и кибернетикой формы выводов. Повышение «интеллектуального» уровня технических систем, безусловно, связано не только с расширением применяемых логических средств, но и с более интенсивным их использованием - проверка информации на непротиворечивость, конструирования планов вычислений и т. п.

Сложнее обстоит дело с семиотическими системами, без которых интеллект невозможен в принципе. Языки, используемые в ЭВМ, ещё далеки от семиотических структур, которыми оперирует мышление. Прежде всего, для решения ряда задач, необходимо последовательное приближение семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпринимаются попытки наделить входные языки ЭВМ универсалиями языка, например, полисемией (которая элиминируется при обработке в лингвистическом процессоре). Уже разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом такой работы является создание семантических языков (и их формализация), в которых слова-символы имеют определенную интерпретацию.

Многие универсалии естественных языков, необходимые для выполнения ими познавательных функций, в языках ИИ пока реализованы слабо (например, открытость) или используются ограниченно (например, полисемия). Все чаще воплощение в семиотических системах универсалий естественного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем ИИ, особенно тех, в которых проблемная область заранее чётко не определена.

Сегодня системы искусственного интеллекта способны осуществлять перевод с одномерных языков на многомерные. В частности, они могут строить диаграммы, схемы, чертежи, графы, чертить на экране кривые и т. п. ЭВМ производят и обратный перевод (описывают графики и тому подобное с помощью символов). Такого рода перевод является существенным элементом интеллектуальной деятельности. Правда современные системы ИИ пока не способны к непосредственному (без перевода на символический язык) использованию изображений или воспринимаемых сцен для «интеллектуальных» действий. Поиск путей глобального, а не локального, оперирования информацией составляет одну из важнейших и задач теории искусственного интеллекта.

Воплощение в информационные массивы и программы систем ИИ аналогов категорий находится пока в начальной стадии. Например, в категории входят понятия «целое», «часть», «общее», «единичное». Они используются в ряде систем представления знаний, в частности в качестве «базовых отношений», в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют системы. В формализованном понятийном аппарате некоторых систем представления знаний предприняты отдельные попытки выражения некоторых моментов содержания и других категорий (например, «причина» и «следствие»). Однако ряд категорий (например, «сущность» и «явление») в языках систем представления знаний отсутствует. В целом, данная проблема разработчиками систем ИИ в полной мере ещё не осмыслена, и предстоит ещё большая работа философов, логиков и кибернетиков по внедрению аналогов категорий в системы представления знаний, и другие компоненты интеллектуальных систем.

Современные системы ИИ почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и т. п. Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фреймах, использующихся при представлении знаний, пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой информацией, находит нужные данные, перестраивает свою систему знаний и т. п.

Ещё в меньшей мере современные системы ИИ способны активно воздействовать на внешнюю среду, без чего не может; осуществляться самообучение и вообще совершенствование «интеллектуальной» деятельности.

Таким образом, хотя определенные шаги к воплощению гносеологических характеристик мышления в современных системах искусственного интеллекта сделаны, но в целом эти системы ещё далеко не владеют комплексом гносеологических орудий, которыми располагает человек и которые необходимы для выполнения совокупности функций абстрактного мышления. Чем больше характеристики систем искусственного интеллекта будут приближены к гносеологическим характеристикам мышления человека, тем ближе будет их «интеллект» к интеллекту человека, точнее, тем выше будет их способность к комбинированию знаковых конструкций, воспринимаемых и интерпретируемых человеком в качестве решения задач и вообще воплощения мыслей.

Поэтому возникает сложный вопрос. При анализе познавательного процесса гносеология абстрагируется от психофизиологических механизмов, посредством которых реализуется сам процесс. Но из этого не следует, что для построения систем искусственного интеллекта эти механизмы не имеют значения. Не исключено, что механизмы, необходимые для воплощения неотъемлемых характеристик интеллектуальной системы, не могут быть реализованы в цифровых машинах или даже в любой технической системе, включающей в себя только компоненты неорганической природы. Также не исключено, что хотя мы и можем познать все гносеологические закономерности, обеспечивающие выполнение человеком его познавательной функции, но их совокупность реализуема лишь в системе, субстратно тождественной человеку.

Подобный взгляд обосновывается X. Дрейфусом. «Телесная организация человека - пишет он - позволяет ему выполнять... функции, для которых нет машинных программ - таковые не только ещё не созданы, но даже не существуют в проекте... Эти функции включаются в общую способность человека к приобретению телесных умений и навыков. Благодаря этой фундаментальной способности наделенный телом субъект может существовать в окружающем его мире, не пытаясь решить невыполнимую задачу формализации всего и вся».

Подчеркивание значения «телесной организации» для понимания особенностей психических процессов, в частности возможности восприятия, заслуживает отдельного внимания. Качественные различия в способности конкретных систем отражать мир тесно связаны с их структурой, которая хотя и обладает относительной самостоятельностью, но не может преодолеть некоторых рамок, заданных субстратом. В процессе биологической эволюции совершенствование свойства отражения происходило на основе усложнения нервной системы, т. е. субстрата отражения. Не исключено, что различие субстратов ЭВМ и человека может обусловить фундаментальные различия в их способности к отражению, что ряд функций человеческого интеллекта в принципе недоступен машинам.

В философской литературе утверждается, что допущение возможности выполнения технической системой интеллектуальных функций человека означает сведение высшего (биологического и социального) к низшему (к системам из неорганических компонентов) и, следовательно, противоречит материалистической диалектике. Но в этом рассуждении не учитывается, что пути усложнения материи однозначно не однозначны, и не исключено, что общество имеет возможность создать из неорганических компонентов (абстрактно говоря, минуя химическую форму движения) системы не менее сложные и не менее способные к отражению, чем биологические. Созданные таким образом системы являлись бы компонентами общества, социальной формой движения. Вопрос о возможности передачи интеллектуальных функций техническим системам, и в частности о возможности наделения их рассмотренными в работе гносеологическими орудиями, не может быть решен только исходя из философских соображений. Он должен быть подвергнут анализу на базе конкретных научных исследований. X. Дрейфус подчеркивает, что ЭВМ оперирует информацией, которая не имеет значения, смысла. Для ЭВМ необходим перебор огромного числа вариантов. Телесная организация человека, его организма позволяет отличать значимое от незначимого для жизнедеятельности и вести поиск только в сфере первого. Для «не телесной» ЭВМ, утверждает Дрейфус, это недоступно. Конечно, конкретный тип организации тела позволяет человеку ограничивать пространство возможного поиска. Это происходит уже на уровне анализаторной системы. Совсем иначе обстоит дело с ЭВМ. Когда в кибернетике ставится общая задача, например распознания образов, то эта задача переводится с чувственно-наглядного уровня на абстрактный. Тем самым снимаются ограничения, не осознаваемые человеком, но содержащиеся в его «теле», в структуре органов чувств и организма в целом. Они игнорируются ЭВМ. Поэтому пространство поиска резко увеличивается. Это значит, что к «интеллекту» ЭВМ предъявляются более высокие требования (поиска в более обширном пространстве), чем к интеллекту человека, к которому приток информации ограничен физиологической структурой его тела.

Обладающие психикой системы отличаются от ЭВМ прежде всего тем, что им присущи биологические потребности, обусловленные их материальным, биохимическим субстратом. Отражение внешнего мира происходит сквозь призму этих потребностей, в чём и выражается активность психической системы. ЭВМ не имеет потребностей, органически связанных с ее субстратом, для нее как таковая информация незначима, безразлична. Значимость, генетически заданная человеку, имеет два типа последствий. Первый - круг поиска сокращается, и, тем самым, облегчается решение задачи. Второй - нестираемые из памяти фундаментальные потребности организма обусловливают односторонность психической системы. Дрейфус пишет в связи с этим: «Если бы у нас на Земле очутился марсианин, ему, наверное, пришлось бы действовать в абсолютно незнакомой обстановке; задача сортировки релевантного и нерелевантного, существенного и несущественного, которая бы перед ним возникла, оказалась бы для него столь же неразрешимой, как и для цифровой машины, если, конечно, он не сумеет принять в расчет никаких человеческих устремлений». С этим можно не согласится. Если предложенный «марсианин» имеет иную биологию, чем человек, то он имеет и иной фундаментальный слой неотъемлемых потребностей, и принять ему «человеческие устремления» значительно труднее, чем ЭВМ, которая может быть запрограммирована на любую цель.

Живое существо в принципе не может быть по отношению к этому фундаментальному слою перепрограммировано, хотя для некоторых целей оно может быть запрограммировано вновь, посредством дрессировки. В этом смысле потенциальные интеллектуальные возможности машины шире подобных возможностей животных. У человека же над фундаментальным слоем биологических потребностей надстраиваются социальные потребности, и информация для него не только биологически, но и социально значима. Человек универсален и с точки зрения потребностей, и с точки зрения возможностей их удовлетворения. Однако эта универсальность особо присуща ему как социальному существу, производящему средства целесообразной деятельности, в том числе и системы искусственного интеллекта. Следовательно, телесная организация не только даёт дополнительные возможности, но и создает дополнительные трудности. Поэтому интеллекту человека важно иметь на вооружении системы, свободные от его собственных телесных или иных потребностей. Конечно, от таких систем неразумно требовать, чтобы они самостоятельно распознавали образы, классифицировали их по признакам, по которым это делает человек. Цели для них необходимо задавать в явной форме.

Следует отметить, что технические системы могут иметь аналог телесной организации. Развитая кибернетическая система обладает рецепторными и эффекторными придатками. Начало развитию таких систем положили интегральные промышленные роботы, в которых ЭВМ в основном выполняет функцию памяти. В роботах «третьего поколения» ЭВМ выполняет и «интеллектуальные» функции. Их взаимодействие с миром призвано совершенствовать их «интеллект». Такого рода роботы имеют «телесную организацию», конструкция их рецепторов и эффекторов содержит определенные ограничения, сокращающие пространство, в котором, образно говоря, могла бы совершать поиск цифровая машина. Тем не менее, совершенствование систем искусственного интеллекта на базе цифровых машин может иметь границы, из-за которых переход к решению интеллектуальных задач более высокого порядка, требующих учёта глобального характера переработки информации и ряда других гносеологических характеристик мышления, невозможен на дискретных машинах при сколь угодно совершенной программе. Техническая, а не только биологическая, эволюция отражающих систем оказывается связанной с изменением материального субстрата и конструкции этих систем. Такая эволюция, т. е. аппаратное усовершенствование систем искусственного интеллекта, например, через более интенсивное использование аналоговых компонентов, гибридных систем, голографии и ряда других идей, будет иметь место. При этом не исключается использование физических процессов, протекающих в мозгу, и таких, которые психика в качестве своих механизмов не использует. Наряду с этим ещё далеко не исчерпаны возможности совершенствования систем ИИ путём использования в функционировании цифровых машин гносеологических характеристик мышления, о которых речь шла выше.

В последнее время при анализе проблем, связанных с ИИ, часто применяют математический аппарат нечётких множеств, идея и реализация которого принадлежит американскому математику Л.Заде. Суть подхода состоит в отказе от принципа детерминизма. Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечёткой информации. Построение моделей, приближенных е рассуждениям человека, и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки. Смещение центра исследований нечётких систем в сторону практических приложений привело к выявлению целого ряда проблем, таких, как новые архитектуры компьютеров для нечётких вычислений, элементная база нечётких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчёта и разработки нечётких систем управления и многое другое. Математическая теория нечётких множеств, предложенная Л.Заде около тридцати лет назад, позволяет описывать нечёткие понятия и знания, оперировать этими знаниями и делать нечёткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. Нечёткое управление является одной из самых активных и результативных областей исследований применения теории нечётких множеств. Нечёткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются неточно или неопределенно. Экспериментально показано, что нечёткое управление дает лучшие результаты, по сравнению с получаемыми, при общепринятых алгоритмах управления. Нечеткая логика, на которой основано нечеткое управление, ближе к человеческому мышлению и естественным языкам, чем традиционные логические системы.

компьютер периферийный искусственный интеллект

Вам также будет интересно:

Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....
Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос
22.11.2019 Желанными друзьями девушек являются бриллианты. Однако, без роскошных, богатых...
Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды
При выборе одежды мужчине в первую очередь нужно определиться со стилем, чтобы составлять...
Какого числа день бухгалтера в России: правила и традиции неофициального праздника
Вы - бухгалтер самый главный,Самый умный, самый славный,Самый лучший, без сомнений,И для...