Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Маленькие манипуляторы: советы родителям, которые идут на поводу у ребенка Ребенок манипулятор психология

Проявление туберкулеза при беременности и способы лечения

Как сделать икосаэдр из бумаги? Как сделать геометрические фигуры из бумаги? Схемы и советы

Далее конструируете развертку додекаэдра с учетом припусков на склеивание. Он и станет основой фигуры. Народные умельцы изготавливают из цветной или белой бумаги необыкновенные по красоте оригами в виде ажурных додекаэдров, а из картона делают оригинальные и прочее).

Самый первый этап в изготовлении – построение пятиугольника нужного размера. Первое знакомство детей с бумажным моделированием всегда начинается с простых геометрических фигур, таких как кубик и пирамида. Итак, начнём! Скачайте развёртки всех фигур на пяти листах и распечатайте на плотной бумаге. И ещё одна забавная пирамидка из пяти граней, её развёртки на 4-ом листе в виде звёздочки в двух экземплярах.

В книге приводятся трафареты и шаблоны для вырезания из бумаги составных частей будущей модели (заготовок), а также даются схемы соединения частей между собой и таблицы раскраски.

Затем вводится понятие звездчатых форм, трехмерный калейдоскоп, анализируются принципы построения звездоформ и рассматриваются соответствующие бумажные модели. Завершается книга математическим определением и изготовлением моделей всех невыпуклых однородных многогранников, в том числе очень сложных «курносых» моделей. В нашей стране весомый вклад в изготовление и популяризацию бумажных моделей многогранников внесла Гончар Валентина Васильевна, архитектор и руководитель кружка бумажного моделирования.

В таблице ниже для примера даны ссылки на соответствующие трафареты и фотографии бумажных моделей сайта www.korthalsaltes.com. Другое направление, развитое Валентиной Васильевной — создание моделей многогранников в технике оригами (в идеале, без использования клея и ножниц).

Развёртки геометрических фигур

Вплотную к созданию моделей многогранников из бумаги примыкает искусство кусудамы, т.е. создание красивых цветных шаров из бумаги. В 2011 году издательство «Многогранники» поставило изготовление многогранников из бумаги на надежные коммерческие рельсы. Каждый набор посвящен конкретному многограннику и содержит вырезанные и подогнанные детали, а также инструкции по изготовлению.

И всякий раз, когда смежные грани окрашиваются в одинаковый цвет, можно упростить изготовление модели, уменьшив количество заготовок и клеевых соединений. Додекаэдром называется правильный многогранник, составленный из двенадцати правильных пятиугольников.

Свое название конструкция получила по количеству входящих в нее граней (традиционно древние греки давали многогранникам имена, отображающие число граней, составляющих структуру фигуры). Таким образом, понятие «додекаэдр» образовано из значений двух слов: «додека» (двенадцать) и «хедра» (грань). Звездчатые додекаэдры имеют более сложную конструкцию по сравнению с обычными. Эти многогранники подразделяются на малый (первого продолжения), средний (второго продолжения) и большой (последняя звездчатая форма правильного додекаэдра).

Как сделать правильный додекаэдр своими руками

Для работы Вам потребуются те же материалы и инструменты, что и для изготовления стандартного додекаэдра. Строите схему основной детали нужных размеров с необходимыми припусками. По обозначенным линиям сгибаете, в том числе не забываете о припусках. Икоси» означает двадцать, «хедра» — означает грань (Икосаэдр – двадцатигранник).

Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 270°. Икосаэдр имеет центр симметрии — центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии. Представляем Вашему вниманию два варианта окраски икосаэдра с использованием пяти цветов. Займитесь сами и научите своих детей клеть эти «азы» моделирования по готовым развёрткам. Для начала я, конечно же, предлагаю научиться клеить обычный кубик. Развёртки сделаны для двух кубиков, большого и маленького.

Сегодня конструкция данной фигуры нашла свое отображение во многих вариантах художественного творчества, архитектуре и строительстве. Фигура относится к одному из пяти Платоновых тел (наряду с тетраэдром, октаэдром, гексаэдром (кубом) и икосаэдром). Хорошо иметь тупой нож или какое-либо приспособление для загибания припусков, но если их нет, то вполне подойдет металлическая линейка или те же ножницы.

Большой выбор развёрток простых геометрических фигур.

Первое знакомство детей с бумажным моделированием всегда начинается с простых геометрических фигур, таких как кубик и пирамида. Не у многих получается склеить кубик с первого раза, иногда требуется несколько дней, чтобы сделать поистине ровный и безупречный куб. Более сложные фигуры цилиндр и конус требуют в несколько раз больше усилий нежели простой кубик. Если вы не умеете аккуратно клеить геометрические фигуры, значит и за сложные модели вам ещё рано браться. Займитесь сами и научите своих детей клеть эти «азы» моделирования по готовым развёрткам.

Для начала я, конечно же, предлагаю научиться клеить обычный кубик. Развёртки сделаны для двух кубиков, большого и маленького. Более сложной фигурой является маленький кубик потому, как клеить его сложнее, чем большой.

Итак, начнём! Скачайте развёртки всех фигур на пяти листах и распечатайте на плотной бумаге. Перед тем, как печатать и клеить геометрические фигуры обязательно ознакомьтесь со статьёй о том, как выбрать бумагу и как вообще правильно вырезать, сгибать и клеить бумагу.

Для более качественной печати советую использовать программу AutoCAD, и даю вам развёртки для этой программы , а также читайте, как распечатывать из автокада . Вырежьте развёртки кубиков с первого листа, по линиям сгиба обязательно проведите иголкой циркуля под железную линейку, чтобы бумага хорошо сгибалась. Теперь можно начинать клеить кубики.

Для экономии бумаги и на всякий пожарный я сделал несколько развёрток маленького кубика, мало ли вам захочется склеить не один кубик или что-то не получится с первого раза. Ещё одна несложная фигура это пирамида, её развёртки найдёте на втором листе. Подобные пирамиды стоили древние египтяне, правда не из бумаги и не таких маленьких размеров:)

А это тоже пирамида, только в отличие от предыдущей у неё не четыре, а три грани.

Развёртки трёхгранной пирамиды на первом листе для печати.

И ещё одна забавная пирамидка из пяти граней, её развёртки на 4-ом листе в виде звёздочки в двух экземплярах.

Более сложная фигура это пятигранник, хотя пятигранник сложнее начертить, нежели склеить.

Развёртки пятигранника на втором листе.

Вот мы и добрались до сложных фигур. Теперь придётся поднапрячься, склеить такие фигуры нелегко! Для начала обычный цилиндр, его развёртки на втором листе.

А это более сложная фигура по сравнению с цилиндром, т.к. в её основании не круг, а овал.

Развёртки этой фигуры на втором листе, для овального основания сделано две запасных детали.

Чтобы аккуратно собрать цилиндр его детали нужно клеить встык. С одной стороны дно можно приклеить без проблем, просто поставьте на стол заранее склеенную трубку, положите на дно кружок и залейте клеем изнутри. Следите, чтобы диаметр трубы и круглого дна плотно подходили друг к другу, без щелей, иначе клей протечёт и всё приклеится к столу. Второй кружок приклеить будет сложнее, поэтому приклейте внутри вспомогательные прямоугольники на расстоянии толщины бумаги от края трубы. Эти прямоугольники не дадут упасть основанию внутрь, теперь вы без проблем приклеете кружок сверху.

Цилиндр с овальным основанием можно клеить также как и обычный цилиндр, но он имеет меньшую высоту, поэтому тут проще вставить внутрь гармошку из бумаги, а наверх положить второе основание и по краю приклеить клеем.

Теперь очень сложная фигура - конус. Его детали на третьем листе, запасной кружок для днища на 4-ом листе. Вся сложность склеивания конуса в его острой вершине, а потом ещё будет очень сложно приклеить дно.

Сложная и одновременно простая фигура это шар. Шар состоит из 12-ти пятигранников, развёртки шара на 4-ом листе. Сначала клеится две половинки шара, а потом обе склеиваются вместе.

Довольно интересная фигура - ромб, её детали на третьем листе.

А теперь две очень похожие, но совершенно разные фигуры, их отличие только в основании.

Когда склеите эти обе фигуры, то не сразу поймёте, что это вообще такое, они получились какие-то совсем невосприимчивые.

Ещё одна интересная фигурка это тор, только он у нас очень упрощён, его детали на 5-ом листе.

И наконец, последняя фигура из равносторонних треугольников, даже не знаю, как это назвать, но фигура похожа на звезду. Развёртки этой фигуры на пятом листе.

На сегодня это всё! Я желаю вам успехов в этой нелёгкой работе!

Много интересного можно найти для себя в тех сферах науки, которые, казалось бы, никогда не пригодятся в привычной жизни простого обывателя. Например, геометрия, о которой большинство забывают, только лишь переступив порог школы. Но странным образом малознакомые области науки становятся очень увлекательными, если с ними столкнуться поближе. Вот и геометрическая развертка многогранника - совершенно ненужная в повседневной жизни вещь - может стать началом увлекательного творчества, способного захватить и детей, и взрослых.

Красивая геометрия

Украшать интерьер дома, создавая своими руками необычные, стильные вещи, - это увлекательное творчество. Смастерить самостоятельно из плотной бумаги различные многогранники - значит создать уникальные вещи, которые могут стать просто занятием на день или два, а могут превратиться в дизайнерские интерьерные украшения. К тому же с развитием техники, способной к пространственному моделированию всевозможных вещей, стало возможным создание стильных и современных 3D-моделей. Есть мастера, которые при помощи простроения разверток по законам геометрии делают из бумаги макеты животных и различных предметов. Но это достаточно сложное математическое и чертежное творчество. Начать работать в подобной технике поможет

Разные грани - разные формы

Многогранники - это особая сфера геометрии. Они бывают простые - к примеру кубики, которыми дети играют с раннего возраста, - а бывают очень и очень сложные. Простроение развертки многогранников для склеивания считается достаточно сложной областью конструирования и творчества: нужно не только знать основы черчения, геометрические особенности пространства, но и иметь пространственное воображение, позволяющее оценить правильность решения еще на стадии проектирования. Но и одной фантазией не обойтись. Чтобы сделать развертки не достаточно просто представить, как в конце концов должна выглядеть работа. Нужно уметь правильно ее просчитать, сконструировать, а также грамотно начертить.

Самый первый многогранник - кубик

Скорее всего, каждый человек, посещавший школу, еще в начальных классах сталкивался на уроках труда с работой, результатом которой должен был стать бумажный кубик. Чаще всего учительница раздавала заготовки - развертки многогранника куба на плотной бумаге со специальными кармашками, предназначенными для склеивания граней модели в единое целое. Такой работой ученики начальной школы могли гордиться, ведь при помощи бумаги, ножниц, клея и своих усилий получалась интересная поделка - трехмерный куб.

Занимательные грани

Удивительно, но многие знания об окружающем мире становятся интересны не на школьной скамье, а лишь тогда, когда можно найти в них нечто увлекательное, способное дать что-то новое, необычное в привычной жизни. Не многие взрослые помнят, что те же многогранники делятся на огромное количество видов и подвидов. Например, есть так называемые платоновы тела - выпуклые многогранники, состоящие только лишь из Таких тел всего пять: тетраэдр, октаэдр, гексаэдр (куб), икосаэдр, додекаэдр. Они представляют собой выпуклые фигуры без впадин. Звездчатые многогранники состоят из этих основных фигур в различных конфигурациях. Поэтому-то развертка многогранника простого позволяет нарисовать, вернее начерить, а затем и склеить из бумаги звездчатый многогранник.

Правильные и неправильные звездчатые многогранники

Складывая платоновые тела между собой в определенном порядке, вы можете построить немало звездчатых многоранников - красивых, сложных, многокомпонентных. Но они будут называться "неправильными звездчатыми многогранниками". Правильных звездчатых многогранников всего четыре: малый звездчатый додекаэдр, большой звездчатый додекаэдр, большой додекаэдр и большой икосаэдр. Развертки многогранников для склеивания не будут простыми чертежами. Они, как и фигуры, будут состоять из нескольких компонентов. Так, например, малый звездчатый додекаэдр строится из 12 пятиугольных равнобочных пирамид, сложенных по типу правильного додекаэдра. То есть для начала придется начертить и склеить 12 одинаковых штук правильных пирамид, состоящих из 5 равных граней. И только затем из них можно сложить звездчатый многогранник. Развертка самого малого звездчатого додекаэра - сложное и практически невыполнимое задание. Чтобы ее простроить, нужно суметь на одной плоскости уместить соединенные друг с другом 13 разверток разных геометрических объемных тел.

Красота в простоте

Все объемные тела, построенные по законам геометрии, будут смотреться завораживающе, в том числе и звездчатый многогранник. Развертка каждого элемента любого подобного тела должна быть выполнена максимально точно. И даже самые простые объемные многогранники, начиная с платонового тетраэдра, - удивительная красота гармонии мироздания и труда человека, воплощенного в бумажной модели. Вот, допустим, самый многогранный из платоновых выпуклых многогранников - додекаэдр. В этой геометрической фигуре 12 абсолютно одинаковых граней, 30 ребер и 12 вершин.Чтобы сделать развертки правильных многогранников для склеивания, нужно приложить максимум аккуратности и внимательности. И чем крупнее фигура по размерам, тем точнее должны быть все измерения.

Как построить развертку самостоятельно?

Пожалуй, помимо склеивания многогранника - хоть звездчатого, хоть платоновского, - еще интереснее построить развертку будущей модели собственными силами, оценив свои способности к черчению, конструированию и пространственному вообжению. Простые платоновсткие тела состоят из простых многоугольников, которые в одной фигуре идентичны друг другу. Так, тетраэдр - это три равнобедренных треугольника. Прежде чем простроить развертку, нужно представить себе, как правильно сложить плоские многоугольники между собой, чтобы получить многогранник. Треугольники можно соединить между собой по ребрам, прочертив один рядом с другим. Для склеивания развертки многогранников схемы должны быть снабжены специальными кармашками или клапанами, которые позволят соединить все части в единое целое. Тетраэдр - простейшая фигура из четырех граней. Октаэдр можно представить как двойной тетраэдр, у него восемь гарней - равнобедренных треугольников. Гексаэдром называют знакомый всем с детства куб. Икосаэдр представляет собой соединение 20 равнобедренных треугольников в правильный выпуклый многогранник. Додекаэдр - это объемная фигура из 12 граней, каждая из которых представляет собой правильный пятиугольник.

Тонкости работы

Построить разверту многогранника и склеить из нее бумажную модель - дело тонкое. Развертку, конечно, можно взять уже готовую. А можно, приложив услилия, построить ее самостоятельно. Но чтобы сделать полноценную объемную модель многогранника, нужно ее собрать. Многогранник лучше всего делать из плотной бумаги, которая хорошо держит форму и не коробится от клея. Все линии, которые необходимо согнуть, лучше всего предварительно продавить, используя, например, непишущую шариковую ручку или обратную сторону лезвия ножа. Этот нюанс поможет сложить модель аккуратнее, с соблюдением размеров и направлений ребер.

Если сделать разные многогранники из цветной бумаги, то такие модели можно использовать в качестве декоративных элементов, украшающих помещение - детскую комнату, кабинет, гостиную. Кстати, многогранники можно назвать уникальной находкой декораторов. Современные материалы позволяют на основе геометрических фигур создавать оригинальные предметы интерьера.











У вас есть немного свободного времени? Бумага, ножницы и клей?
Тогда приступаем:


Что такое развертка многогранника? Вы скажете — кусок картона, из которого можно свернуть данный многогранник. В этом есть правда, но это не вся правда. Оказывается, понятие развертки включает в себя больше, чем просто кусок картона.

Какой многогранник можно свернуть из столь хорошо известного латинского креста? Конечно же, куб. Для этого надо покрасить ребра, как это сделала наша волшебная кисточка (ребра одинакового цвета склеиваются в многограннике друг с другом).

На самом деле, конечно же, лучше было бы раскрашивать не ребра, а каждую пару точек в разные цвета. Это бы задало, как говорят в математике, условия склейки границ.

После того как условия склейки границ заданы, ребра, проходящие внутри куска картона, определены однозначно по теореме А.Д. Александрова.

Итак, из креста можно сложить куб.

Но оказывается, что если условия склейки границ задать по-другому, то можно получить совсем даже не куб!

Наша волшебная кисточка покрасила границы вот таким образом. Еще один ее взмах — и мы уже знаем, как определены ребра внутри куска картона. Если теперь, следуя нарисованным условиям склейки, сложить многогранник, то получим пирамиду!

Не так давно было доказано, что по-разному задавая условия склейки границ латинского креста, из него можно сложить 5 различных типов выпуклых многогранников.

Итак, как мы убедились, в понятие развертки входит не только кусок картона, но и условия склейки его границ. Если последнее не определено, то из одного и того же куска можно сложить разные выпуклые многогранники.
РАЗВЁРТКИ КУБА
Почти каждый, кто пытается самостоятельно найти все развёртки куба
сталкивается с вопросом: все ли развёртки найдены? Дело в том, что куб очень симметричная фигура и на подсознательном уровне нам кажется, что и число развёрток куба должно быть каким-то «красивым», похожим на другие характеристики куба (напомним, что куб имеет 12 рёбер, 8 вершин, 6 граней и 4 диагонали). Как оказалось, куб имеет 11 развёрток. И когда мы находим 11-ю развёртку, кажется, что не все ещё развёртки найдены и самые сложные ещё скрыты от нас.
Куб имеет именно 11 развёрток.



РАЗВЁРТКА ПИРАМИДЫ



Сделать пирамиду из бумаги очень легко, потому что я представлю вам готовую развертку, вам только нужно будет перенести ее на ваш лист, вырезать и склеить. Но, есть одно Большое И Положительное Но, если у вас есть принтер, тогда Вы сделаете пирамиду как минимум в два раза быстрее. Если он у вас есть, тогда надо только распечатать развертку на принтере, вырезать и склеить – Все, пирамида готова! На этом все. Пользуйтесь на здоровье, делайте свою жизнь проше и получайте в школе за геометрические финуры только пятеркИ, ну или хотя бы четверки! Удачи!



Посмотрите интересные развёртки


Допустим, что многогранник - многогранную поверхность - после проведения разрезов по нескольким ребрам удается развернуть на плоскость. В результате получается развертка многогранника. Развертка представляет собой плоский многоугольник, составленный из меньших многоугольников - граней исходного многогранника. Так, на рис. 1 изображены развертки всех пяти видов правильных многогранников. По ним легко восстановить, склеить соответствующие многогранники; обычно на развертках указывают, какие именно пары сторон развертки нужно склеивать для получения исходного многогранника.

Один и тот же многогранник может иметь несколько разных разверток. Например, правильный тетраэдр имеет и треугольную развертку, которая даже более удобна для склейки тетраэдра: достаточно согнуть три угловых треугольника (рис. 2). Аналогичная развертка произвольного тетраэдра представляет собой в общем случае шестиугольник с попарно равными соседними сторонами (рис. 3).

Развертки (или части разверток) применяют при изготовлении моделей различных многогранников. Пример-склейка «треугольных» (правильнее говорить «тетраэдрических») молочных пакетов. Эти пакеты не являются правильными тетраэдрами: правильные тетраэдры плохо укладываются в молочные корзины. Молочные пакеты представляют собой равногранные тетраэдры с четырьмя ребрами примерно по 17 см и двумя ребрами по 13 см. Внимательно рассмотрев пакет, вы увидите, что он склеен из... прямоугольника, получающеюся при разрезании тетраэдра по двум меньшим ребрам и большей высоте одной из граней. Легко представить обратную процедуру: как показано на рис. 4, сначала прямоугольник склеивается в цилиндр (точнее, в боковую поверхность цилиндра), а потом вдоль взаимно перпендикулярных диаметров оснований в тетраэдрический пакет. Конечно, технологически это осуществить проще, чем склейку пакета из треугольника, - не потребуется даже никаких клапанов для склейки.

«Он же, не смутясь нимало.
Развернул пазы и петли.
Стал вертеть их так и эдак,
Пока все вдруг не предстало
В виде плоскостей, квадратов,
Точно сложная фигура
Из Эвклидова трактата».
Л. Кэррол

Развертки помогают решать задачи на отыскание кратчайшего пути (по поверхности фигуры) из одной точки в другую. Например, чтобы из всех путей вида , ведущих по поверхности куба из вершины в противолежащую вершину (рис. 5,а), выбрать кратчайший, достаточно развернуть две соседние грани и соединить точки и отрезком прямой (рис. 5,б). Кратчайший путь будет проходить через середину ребра (всего таких путей будет 6 - по числу разделяющих точки и ребер куба). Обратите внимание: точно так же решается и задача о кратчайшем «перевале» через ребро любого двугранного угла (рис. 6).

Рассматривая молочный пакет, мы видели, что цилиндрическую поверхность тоже можно развернуть на плоскость. Это верно и для поверхности конуса: разрезав ее по окружности основания и по одной из образующих, после разворачивания мы получим (касающиеся друг друга) круг и круговой сектор (рис. 7,а,б). Если кривая на поверхности не пересекает линии разреза, то ее длина при разворачивании не меняется. Поэтому и в случае цилиндра и конуса развертку можно применить для отыскания кратчайшего пути из точки в точку , идущего по боковой поверхности конуса или цилиндра. Конечно, при этом следует позаботиться о выборе линии, по которой делать разрез, иначе можно получить не самый короткий путь, а лишь более короткий по сравнению с ближайшими путями (пунктир на рис. 7, а).

Развертки цилиндра и конуса можно использовать и для вычисления площадей их боковых поверхностей ( - для цилиндра и - для конуса). Однако этот метод определения площадей далек от универсальности, ибо большинство искривленных поверхностей нельзя развернуть на плоскость с сохранением длин и площадей. С этим, в частности, связаны трудности при изготовлении покрышек для мячей.

Вам также будет интересно:

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань
Одним из любимейших сказочных героев является кот в сапогах. И взрослые, и дети обожают...
Как определить пол ребенка?
Будущие мамочки до того, как УЗИ будет иметь возможность рассказать, кто там расположился в...
Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....