Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Цветок для шторы своими руками

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань

Как определить пол ребенка?

Потенциальная энергия определение формула единица измерения. Тема. Потенциальная энергия

В предыдущем параграфе мы говорили о работе, которую может совершить тело за счет уменьшения своей скорости, а теперь нас будет интересовать работа, которую может совершить тело или система тел вследствие изменения положения тел.

Рассмотрим примеры.

Работа поднятого груза. Когда подвешенный на тросе груз равномерно движется вниз, он действует на трос силой, направленной тоже вниз (рис. 30.1).

Эта сила обусловлена силой тяжести: она совершает работу, действуя на груз, а груз совершает работу, действуя на трос.

Итак, благодаря действию силы тяжести груз может совершить работу при движении вниз.

Работа пружины. Когда деформация пружины уменьшается, пружина действует на тело силой упругости, направленной так же, как перемещение тела (рис. 30.2). При этом пружина совершает положительную работу.

Итак, деформированная пружина может совершить работу при возвращении в недеформированное состояние.

В рассмотренных примерах работу совершают силы тяготения и силы упругости. Как мы уже знаем, общая важная особенность этих сил состоит в том, что при движении по замкнутой траектории (когда тело возвращается в начальное положение) работа этих сил равна нулю. (Такие силы называют консервативными. Если между телами замкнутой системы действуют только консервативные силы, то, как мы увидим далее, механическая энергия системы сохраняется («консервируется»).)

Благодаря этому для системы тел, взаимодействующих посредством сил тяготения и упругости, можно определить потенциальную энергию как величину, характеризующую способность системы тел совершать работу и зависящую только от взаимного положения тел.

Потенциальная энергия системы тел характеризует ее способность совершать работу вследствие изменения взаимного положения взаимодействующих тел.

Если система тел совершает положительную работу, потенциальная энергия системы уменьшается. А если система тел совершает отрицательную работу, ее потенциальная энергия увеличивается. При этом

изменение потенциальной энергии системы тел равно работе сил упругости и тяготения, действующих со стороны тел системы, взятой со знаком минус:

E p2 – E p1 = –A (1)

Здесь E p1 и E p2 обозначают начальную и конечную потенциальную энергию системы тел.

(Мы приводим определение потенциальной энергии, применимое к механическим явлениям. В дальнейшем мы расширим и уточним это определение.)

1. Как изменяется потенциальная энергия системы «камень + Земля», когда камень движется вверх? вниз? Объясните свои ответы.

2. Как изменяется потенциальная энергия пружины, когда деформация уменьшается? увеличивается? Объясните свои ответы.

Нулевой уровень потенциальной энергии. Из формулы (1) следует, что физический смысл имеет только изменение потенциальной энергии: оно измеряется работой, совершенной телами системы.

Поэтому нулевой уровень потенциальной энергии (состояние системы, которому сопоставляется нулевое значение потенциальной энергии) выбирают так, чтобы упростить расчеты.

2. Потенциальная энергия поднятого груза

Когда груз массой m равномерно перемещается вертикально вниз на расстояние h, он совершает положительную работу mgh, потому что он действует на опору или поднес направленной вниз силой (весом груза), равной силе тяжести.

Следовательно, при уменьшении высоты груза на h потенциальная энергия груза уменьшается на mgh. (Важно понимать, что это потенциальная энергия системы взаимодействующих тел – груза и Земли.) Если сопоставить нулевой уровень потенциальной энергии наинизшему положению груза, то

потенциальная энергия груза массой m, поднятого на высоту h, выражается формулой

3. Брусок массой 200 г поднят на высоту 1 м над поверхностью стола высотой 80 см (рис. 30.3).

А) Чему равна потенциальная энергия бруска, если за нулевой уровень потенциальной энергии бруска принять уровень стола? уровень пола?
б) Чему равно изменение потенциальной энергии бруска при его падении на стол, если за нулевой уровень потенциальной энергии бруска принять уровень стола? уровень пола?

Эти примеры подтверждают, что имеет значение только изменение потенциальной энергии. Оно измеряется работой, совершенной телом или системой тел, и не зависит от выбора нулевого уровня потенциальной энергии.

3. Потенциальная энергия упругой деформации

При возвращении в недеформированное состояние сила упругости пружины совершает положительную работу

При этом потенциальная энергия пружины уменьшается на такую же величину. Если нулевому уровню потенциальной энергии сопоставить состояние недеформированной пружины, то

потенциальная энергия деформированной пружины жесткостью k выражается формулой

Ep = (kx 2)/2, (3)

где x – деформация пружины.

Потенциальную энергию, выражаемую формулой (3), называют также потенциальной энергией упругой деформации. Она зависит от квадрата деформации. Поэтому потенциальная энергия сжатой пружины равна потенциальной энергии растянутой пружины, если модуль деформации пружины в обоих случаях один и тот же.

4. В начальном состоянии пружина жесткостью 200 Н/м сжата на 1 см. Как изменилась потенциальная энергия пружины, если в конечном состоянии:
а) пружина не деформирована?
б) сжата на 2 см?
в) растянута на 1 см?
г) растянута на 2 см?

5. Шар массой 200 г подвешен к пружине жесткостью 100 Н/м и находится в равновесии, Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
а) На какую высоту подняли шар?
б) Как изменилась потенциальная энергия шара за время, в течение которого он возвращался в положение равновесия?
в) Как изменилась за то же время потенциальная энергия пружины?
г) Как изменилась за то же время потенциальная энергия системы «шар + Земля + пружина»?

Дополнительные вопросы и задания

6. С высоты 20 м над поверхностью земли свободно без начальной скорости падает камень массой 300 г. За нулевой уровень потенциальной энергии камня примите уровень земли.
а) Чему равна потенциальная энергия камня в начальный момент?
б) Чему равна потенциальная энергия камня через 1 с после начала движения?
в) Через какое время после начала движения потенциальная энергия камня уменьшилась в 2 раза по сравнению с ее начальным значением?

7. Шар массой 1 кг брошен с поверхности земли с начальной скоростью 20 м/с под углом 30º к горизонту. Считайте, что сопротивлением воздуха при движении шара можно пренебречь.
а) До какой максимальной высоты поднялся шар?
б) Как изменилась потенциальная энергия шара за время подъема?

8. По реке с постоянной скоростью плывет плот. Как изменяется со временем:
а) кинетическая энергия плота?
б) потенциальная энергия плота?

9. Когда сжатую пружину сжали еще на 2 см, ее потенциальная энергия увеличилась в 9 раз.
а) Во сколько раз модуль конечной деформации пружины больше, чем модуль начальной деформации?
б) Чему равен модуль начальной деформации пружины?

10. Две пружины жесткостью 100 Н/м и 400 Н/м соединены последовательно. Систему соединенных пружин растянули на 5 см.
а) Чему равна деформация более мягкой пружины?
б) Чему равна деформация более жесткой пружины?
в) Потенциальная энергия упругой деформации какой пружины больше, и во сколько раз?

Если тело некоторой массы m двигалось под действием приложенных сил, и его скорость изменилась от до то силы совершили определенную работу A .

Работа всех приложенных сил равна работе равнодействующей силы (см. рис. 1.19.1).

Между изменением скорости тела и работой, совершенной приложенными к телу силами, существует связь. Эту связь проще всего установить, рассматривая движение тела вдоль прямой линии под действием постоянной силы В этом случае векторы силы перемещения скорости и ускорения направлены вдоль одной прямой, и тело совершает прямолинейное равноускоренное движение. Направив координатную ось вдоль прямой движения, можно рассматривать F , s , υ и a как алгебраические величины (положительные или отрицательные в зависимости от направления соответствующего вектора). Тогда работу силы можно записать как A = Fs . При равноускоренном движении перемещение s выражается формулой

Отсюда следует, что

Это выражение показывает, что работа, совершенная силой (или равнодействующей всех сил), связана с изменением квадрата скорости (а не самой скорости).

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии и выражается теоремой о кинетической энергии:

Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения.

Кинетическая энергия - это энергия движения. Кинетическая энергия тела массой m , движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Если тело движется со скоростью , то для его полной остановки необходимо совершить работу

В физике наряду с кинетической энергией или энергией движения важную роль играет понятие потенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения и определяется только начальным и конечным положениями тела . Такие силы называются консервативными .

Работа консервативных сил на замкнутой траектории равна нулю . Это утверждение поясняет рис. 1.19.2.

Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по величине и направлению сила тяжести . Работа этой силы зависит только от вертикального перемещения тела. На любом участке пути работу силы тяжести можно записать в проекциях вектора перемещения на ось OY , направленную вертикально вверх:

ΔA = F т Δs cos α = -mg Δs y ,

где F т = F т y = -mg - проекция силы тяжести, Δs y - проекция вектора перемещения. При подъеме тела вверх сила тяжести совершает отрицательную работу, так как Δs y > 0. Если тело переместилось из точки, расположенной на высоте h 1 , в точку, расположенную на высоте h 2 от начала координатной оси OY (рис. 1.19.3), то сила тяжести совершила работу

Эта работа равна изменению некоторой физической величины mgh , взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.

Потенциальная энергия E р зависит от выбора нулевого уровня, т. е. от выбора начала координат оси OY . Физический смысл имеет не сама потенциальная энергия, а ее изменение ΔE р = E р2 - E р1 при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

скриншот квеста с отскоком мячика от мостовой

Если рассматривать движение тел в поле тяготения Земли на значительных расстояниях от нее, то при определении потенциальной энергии необходимо принимать во внимание зависимость силы тяготения от расстояния до центра Земли (закон всемирного тяготения ). Для сил всемирного тяготения потенциальную энергию удобно отсчитывать от бесконечно удаленной точки, т. е. полагать потенциальную энергию тела в бесконечно удаленной точке равной нулю. Формула, выражающая потенциальную энергию тела массой m на расстоянии r от центра Земли, имеет вид:

где M - масса Земли, G - гравитационная постоянная.

Понятие потенциальной энергии можно ввести и для силы упругости. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x , или сначала удлинить ее на 2x , а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях сила упругости совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была не деформирована. Эта работа равна работе внешней силы A , взятой с противоположным знаком (см 1.18):

где k - жесткость пружины. Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, т. е. сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x 1 , тогда при переходе в новое состояние с удлинением x 2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации - это энергия взаимодействия отдельных частей тела между собой посредством сил упругости.

Свойством консервативности наряду с силой тяжести и силой упругости обладают некоторые другие виды сил, например, сила электростатического взаимодействия между заряженными телами. Сила трения не обладает этим свойством. Работа силы трения зависит от пройденного пути. Понятие потенциальной энергии для силы трения вводить нельзя.

Чтобы увеличить расстояние тела от центра Земли (поднять тело), над ним следует совершить работу. Эта работа против силы тяжести запасается в виде потенциальной энергии тела.

Для того, чтоб понять что же такое потенциальная энергия тела найдем работу, совершаемую силой тяжести при перемещении тела массой m вертикально вниз с высоты над поверхностью Земли до высоты .

Если разность пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяготения во время движения тела можно считать постоянной и равной mg.

Так как перемещение совпадает по направлению с вектором силы тяжести то получается, что , работа силы тяжести равна

Из последней формулы видно, что работа силы тяжести при переносе материальной точки массой m в поле тяготения Земли равна разности двух значений некоторой величины mgh. Поскольку работа есть мера изменения энергии, то в правой части формулы стоит разность двух значений энергии этого тела. Это значит, что величина mgh представляет собой энергию, обусловленную положением тела в поле тяготения Земли.

Энергию, обусловленную взаимным расположением взаимодействующих между собой тел (или частей одного тела), называют потенциальной и обозначают Wp. Следовательно, для тела, находящегося в поле тяготения Земли,

Работа силы тяжести равна изменению потенциальной энергии тела , взятому с противоположным знаком.

Работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, то есть высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия тела , находящегося на высоте h над поверхностью Земли, равна произведению массы тела на Модуль ускорения свободного падения и расстояние его от поверхности Земли:

Из всего выше сказанного, можем сделать вывод: потенциальная энергия тела зависит всего от двух величин , а именно: от массы самого тела и высоты, на которую поднято это тело. Траектория движения тела никак не влияет на потенциальную энергию.

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Так же есть:

Кинетическая энергия

В формуле мы использовали.

Работа совершается в природе всегда, когда какое-либо тело в направлении его движения или против него действует сила (или несколько сил) со стороны другого тела (других тел).

Работа силы равна произведению модулей силы и перемещения точки приложения силы и на косинус угла между ними.

А= F · S ·соs , где А Дж); F – сила, (Н); S- перемещение, (м).

Энергия не создается и не уничтожается, а только превращается из одной формы в другую: из кинетической в потенциальную и наоборот. Учитывая значение Ек и Еп, закон сохранения механической

энергии можно записать так:

В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h 2 меньше h 1 . Часть потенциальной энергии перешло в кинетическую.

Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на Земле).

Полные механические энергии равны между собой, если пренебрегать силой сопротивления воздуха.

Вам также будет интересно:

Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....
Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос
22.11.2019 Желанными друзьями девушек являются бриллианты. Однако, без роскошных, богатых...
Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды
При выборе одежды мужчине в первую очередь нужно определиться со стилем, чтобы составлять...