Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Цветок для шторы своими руками

Как отстирать засохшую краску с одежды в домашних условиях Чем очистить вещь от краски

Как определить пол ребенка?

Маска для лица с яйцом Маска из куриного яйца

Самый дешевый вид энергии. Какой вид энергии дешевле? Где в россии самые выгодные энерготарифы для промышленных предприятий

Сегодня всем известно, что запасы углеводородов на Земле имеют свой предел. С каждым годом все труднее становится добывать нефть и газ из недр. Кроме того, их сжигание наносит непоправимый ущерб экологии нашей планеты. Несмотря на то, что технологии производства возобновляемой энергии сегодня очень эффективны, государства не спешат отказываться от сжигания топлива. При этом, цены на энергоносители растут с каждым годом, заставляя простых граждан все больше и больше раскошеливаться.

В связи с этим, производство альтернативной энергии сегодня становится не просто чудачеством отдельных любителей, а занятием вполне утилитарным и даже необходимым в некоторых случаях. Сотни тысяч владельцев загородных домов, не только в мире, но в нашей стране, сегодня с удовольствием используют «зеленые» технологии производства электроэнергии. Как добывается альтернативная энергия своими руками: обзор лучших возобновляемых источников электричества можно увидеть далее.

Доступные для извлечения собственными руками источники возобновляемой энергии

Человек с давних времен использовал в своем быту приспособления и механизмы, которые были способны преобразовывать движение природных стихий в механическую энергию. Примером могут служить ветряные и водяные мельницы. С изобретением электричества стало возможным преобразование механической энергии в электрическую путем установки генератора на движущиеся части механизма. Со временем эти конструкции были усовершенствованы, и сегодня на гидроэлектростанциях и ветряных комплексах в мире вырабатывается большое количество электричества.

Кроме воды и ветра человечеству доступен солнечный свет, энергия земных недр, биологические топливо. В связи с этим в быту используются следующие устройства для выработки возобновляемой энергии:

  • Батареи для получения солнечной энергии.
  • Тепловые насосные станции.
  • Ветровые генераторы.
  • Установки на биогазовом топливе.

Промышленность хорошо чувствует пожелания людей и уже выпускает множество моделей каждого из этих устройств. Однако цены на них сегодня таковы, что о быстрой окупаемости не может быть и речи. В связи с этим умельцы из народа разработали множество схем и проектов, по которым можно изготовить такие агрегаты. Рассмотрим некоторые из них.

Солнечные батареи – подарок космических технологий

Солнечные батареи получили известность в начале космической эры. Они по сей день используются, как источники энергии для космических кораблей и межпланетных станций. Аппараты, бороздящие пески Марса, оборудованы этими нехитрыми приспособлениями. Само Солнце дает для них свою энергию. Принцип действия солнечных панелей основан на способности фотонов при прохождении через полупроводниковый слой создавать в нем разность потенциалов, которая, при замыкании в электрическую цепь, создает электрический ток.

Удивительно, но сделать самостоятельно солнечную батарею не так уж и трудно. Есть два способа ее создания. Первый способ простой, и с ним справится любой человек. Нужно просто приобрести готовые фотоэлементы на поликристаллах или монокристаллах, связать их в одну цепь и закрыть прозрачным корпусом. Эти кристаллы способны улавливать фотоны света Солнца и преобразовывать их в электричество. Они очень хрупкие, поэтому в процессе изготовления прибора, нужно соблюдать меры предосторожности. Каждый элемент промаркирован, поэтому его вольтамперные характеристики известны. Необходимо только собрать нужное количество элементов для сооружения батареи нужной мощности. Для этого:

  • Делают прозрачный каркас из пластика, оргстекла или поликарбоната.
  • Вырезают из фанеры или пластика корпус по размеру этого каркаса.
  • Все кристаллические элементы последовательно спаивают в схему. Только при последовательном соединении достигается увеличение напряжения в цепи. Оно просто суммируется со всех элементов.
  • Фотоэлементы помещают в каркас и аккуратно закрывают, не забыв вывести наружу провода.

При выборе фотоэлементов нужно учесть то, что монокристаллы более долговечны и эффективны (КПД 13%), а поликристаллы часто ломаются и менее эффективны (КПД 9%). При этом первым требуется постоянный открытый солнечный свет, а вторые довольствуются более пасмурной погодой. Устанавливают готовую панель чаще всего на крышу или на освещенную солнцем площадку. Угол наклона должен регулироваться, так как зимой лучше устанавливать панель вертикально во избежание засыпания снегом.

Второй способ изготовления солнечных батарей на много сложнее. Здесь уже требуются некоторые электротехнические навыки. Вместо готовых элементов нужно сделать диодную цепь. Для этого необходимо приобрести или насобирать из старой техники диодов. Лучше всего для этой цели подойдут Д223Б. Они имеют высокое напряжение в 350мВ при прямых солнечных лучах. То есть для выработки 1В понадобится всего 3 таких диода. Напряжение в 12В способны создать 36 диодов. Количество значительное, но стоимость у них небольшая, около 130 рублей за сотню, поэтому основная проблема в длительности монтажа.

Диоды замачивают в ацетоне, после чего удаляют с них краску. Затем сверлят необходимое количество отверстий в пластиковой заготовке и вставляют в них диоды. Спайку производят последовательно по рядам. Готовую панель закрывают прозрачным материалом и помещают в кожух.

Как видим, воспользоваться дармовой энергией Солнца не так уж и сложно. Достаточно уделить немного сил и средств.

Тепловые насосы создают тепло из всего

Принцип их действия основан на циклах Карно. Говоря более простым языком, это большой холодильник, который при охлаждении окружающей среды, забирает у нее низкопотенциальную энергию и преобразовывает ее в тепло с высоким потенциалом. Окружающая среда может быть любой: земля, вода, воздух. В любое время года они содержат малую долю тепла. Устройство имеет достаточно сложное устройство и состоит из нескольких основных компонентов:

  • Наружный контур, заполненный природным теплоносителем.
  • Внутренний контур с водой.
  • Испаритель.
  • Компрессор.
  • Конденсатор.

В системе, как и в холодильнике применяют фреон. Наружный контур может быть помещен в водяную скважину или в открытый водоем. Иногда даже просто в землю закапывают этот контур, но это требует больших затрат.

Рассмотрим процесс самостоятельного изготовления теплового насоса. Первым делом необходимо раздобыть компрессор. Можно снять его с кондиционера. Достаточно будет мощности на нагрев 9,7кВт.

Вторая важная деталь – это конденсатор. Его можно сделать из обычного бака объемом 120 литров. Главное, чтобы он был не подвержен коррозии. Бак режут на две части и вставляют внутрь змеевик из меди. На выходы змеевика крепят двухдюймовые соединения для монтажа контура. Бак сваривают с помощью сварочного аппарата. Площадь змеевика нужно вычислить заранее по формуле: ПЗ = МТ/0,8РТ, где: ПЗ - площадь у змеевика; МТ - Мощность тепловой энергии, которую выдает система, кВт; 0,8 - коэффициент теплопроводности при протекании воды вокруг меди; РТ - разница между температурами воды на входе и на выходе в градусах Цельсия. Змеевик можно изготовить самостоятельно, путем наматывания трубы на любой цилиндр. Внутри него будет циркулировать фреон, а в баке вода из системы отопления. Она будет нагреваться при конденсации фреона.

Для изготовления испарителя потребуется пластиковая тара, имеющая объем не менее 130 литров. Горловина этого бака должна быть широкой. В него тоже помещают змеевик, который будет соединен с предыдущим в единый контур через компрессор. Выход и вход испарителя делают с помощью обычной канализационной трубы. Через него будет протекать вода из водоема или скважины, которая обладает энергией, достаточной для испарения фреона.

Работает такая система следующим образом: испаритель помещается в водоем или скважину. Вода, огибая его, вызывает испарение хладагента, который поднимается по трубам из испарителя в конденсатор. Там он конденсируется, отдавая тепло окружающей змеевик воде. Эта вода циркулирует по трубам отопления с помощью центробежного насоса, обогревая помещение. Хладагент компрессором вновь отправляется в испаритель, и цикл повторяется вновь и вновь.

Рассмотренный нами агрегат способен обогреть помещение в 60 м2 в любое время года. При этом энергия берется из окружающей среды.

Потомки ветряных мельниц, вырабатывающие киловатты

В устройстве ветряков ничего сложного нет. Не зря наши предки использовали энергию ветра так обыденно. Принципиально ничего не изменилось. Просто вместо жернов мельницы был установлен привод на генератор, который преобразует вращательную энергию лопастей в электричество.

Для изготовления ветрогенератора понадобится: высокая башня, лопасти, генератор и накопительная батарея. Придумать надо и простейшую систему управления и распределения электричества. Рассмотрим один из способов сооружения ветряка самостоятельно.
Не будем фокусировать внимание на устройстве башни и лопастей, здесь нет ничего сложного для того, кто хоть что-то смыслит в механике. Остановимся на генераторе. Можно, конечно, приобрести готовый генератор с необходимыми параметрами, но наша задача создать ветряк самостоятельно. Если у вас есть двигатель от старой стиральной машины, и он работает, то дело решено. Нам нужно будет переделать его в генератор. Для этого приобретем неодимовые магниты.

Ротор генератора растачиваем на токарном станке, делая углубления для магнитов. В них на суперклей приклеиваем магниты. Заворачиваем ротор в бумагу, а расстояние между магнитами заливаем эпоксидной смолой. Когда она засохнет – убираем бумагу, а ротор шлифуем наждачкой. Внимание! Чтобы магниты не залипали, их нужно установить с небольшим наклоном. Теперь при вращении ротора, магниты будут образовывать разность потенциалов, которую снимают с помощью клемм.

Биогазовый генератор создаст энергию из отходов

Человек в процессе своей жизнедеятельности вырабатывает огромное количество органических отходов. Особенно это актуально возле крупных городов или животноводческих комплексов. Если эти отходы поместить в анаэробную среду, то начинается процесс их разложения с выделением смеси горючих газов: метана, сероводорода с примесями углекислоты. Все они, кроме последнего являются прекрасным топливом, хоть и обладают неприятным запахом.

Для того, чтобы сделать генератор для биотоплива, понадобится герметично закрытый бак. В нем смонтирован шнек, которым отходы будут периодически перемешиваться, патрубок, через который отработанные отходы будут выгружаться и горловина для их загрузки. Кроме того, в верхней части бака вваривают патрубок для отбора выделяемого биогаза и отвода его к потребителю.

Лучше всего эту конструкцию закопать в землю и сделать абсолютно герметичной. Это будет способствовать эффективному отбору газа без утечки. Так как емкость герметична, то расход газа должен быть постоянным, в противном случае, рекомендуется сделать предохранительный клапан, который будет открываться при превышении допустимой нормы давления. Переработанные отходы являются прекрасным удобрением для огорода.

Простейшая конструкция этой установки позволяет создавать ее практически из любых подручных материалов. Это очень широко распространено в Китае. Однако, стоит соблюдать меры безопасности, так как биогаз очень горюч и токсичен. Больше всего биогаза образуется из смеси животных отходов и силоса. В бак наливают теплую воду, которая запускает процесс разложения субстрата.
Обзор лучших возобновляемых источников электричества показал, что альтернативная энергия своими руками не такое уж и чудачество. Ее можно получить буквально из ничего и в достаточных количествах для потребления домохозяйства.

В процессе проработки любого инвестиционного проекта , связанного с выбором места размещения площадки производственного предприятия , инвестору требуется принимать во внимание множество различных экономических факторов, присущих каждому региону. Наиболее важным элементом затрат будущего производственного предприятия является стоимость электроэнергии , которую предприятие будет оплачивать на протяжении всего жизненного цикла. Правильный выбор региона размещения производственной площадки позволит инвестору сэкономить средства на оплату электроэнергии , размеры которых в будущем могут составлять десятки и даже сотни миллионов рублей.

Структура стоимости электроэнергии для промышленных потребителей в России

Рисунок 1

Для каждого из 85 регионов России стоимость отдельных компонентов, показанных на рисунке 1, является различной. Это связано с рядом факторов:

  • Различные районы поставки электроэнергии и мощности
  • Различная структура топливного баланса поставщиков электроэнергии
  • Различные параметры тарифов на передачу электроэнергии в регионе
  • Различные величины региональных снабженческих сбытовых надбавок
  • Вхождение региона в зону свободного оптового рынка либо в зону с регулируемым ценообразованием.

Внутри тарифных групп промышленных потребителей стоимость электроэнергии также имеет группировку в зависимости от параметров уровня напряжения питающей сети каждого предприятия, величины максимальной мощности энергопринимающих устройств . Данные факторы также являются немаловажными при расчете инвестиционных проектов.

На рисунке 2 представлены региональные энерготарифы за второе полугодие 2015 года. Данные тарифы рассчитаны для одинаковой категории потребителей электроэнергии - промышленных предприятий имеющих максимальную мощность энегопринимающих устройств свыше 10 МВА и уровень напряжения питающей сети 110 кВ. При расчетах была принята стоимость покупки электроэнергии у базового регионального гарантирующего поставщика. В случае если промышленное предприятие имеет иные параметры электропотребления, то данные тарифы для рассматриваемых регионов будут отличаться.

Принятая тарифная группа является самой дешевой в рамках существующей тарифной сетки. Однако соотношение представленных тарифов дает картину, отражающую различия в тарифах на электроэнергию для промышленности между различными регионами России.

Региональные энерготарифы для промышленных предприятий


Рисунок 2. Данные за второе полугодие 2015 года

Как видно из диаграммы, величины тарифов на электроэнергию для разных регионов имеют существенные отличия. Отличия величин тарифов между некоторыми регионами может достигать трехкратного размера. Для примера, стоимость электроэнергии за 1 кВт/ч в Республике Хакасия составляет 2,01 руб., а в Республике Саха (Якутия) - 5,97 руб. за 1 кВт/ч.

Средняя стоимость электроэнергии по России за исследуемый период составила 3,16 руб. за 1 кВт/ч. При этом, в 49 регионах показатель стоимости электроэнергии наблюдается ниже среднего значения, в 36 регионах - выше среднего. Различия между региональными тарифами отражают различия между инвестиционным потенциалом каждого региона. Для полноты картины полезно также произвести разбивку тарифов на электроэнергию для промышленных предприятий по федеральным округам (рисунок 3).

Рисунок 3. Данные за второе полугодие 2015 года

Как видим, наибольший инвестиционный потенциал имеет Сибирский федеральный округ, энерготарифы для промышленных потребителей которого составляют 2,71 руб. за 1 кВт/ч. Сравнительно низкая стоимость электроэнергии в Сибирском федеральном округе обусловлена высокой концентрацией гидрогенерации и избытком предложения электроэнергии.

Средний инвестиционный потенциал наблюдается у Северо-Кавказского, Приволжского, Уральского и Северо-Западного федеральных округов, величина тарифов на электроэнергию для выбранной группы потребителей составляет 3,0 руб. за 1 кВт/ч.

Самый низкий инвестиционный потенциал у Дальневосточного, Южного и Крымского федеральных округов. Высокая стоимость электроэнергии для данных территорий обусловлена рядом факторов, связанных со структурой топливного баланса и тарифами на передачу электроэнергии.

Необходимо отдельно сказать о Крымском федеральном округе. На момент выполнения данного исследования, основная доля поставки электроэнергии на данную территорию осуществлялась из Украины. Наиболее вероятно, что после открытия всех очередей «Крымского энергомоста», стоимость электроэнергии в данном федеральном округе снизится, что приведет к повышению инвестиционной привлекательности данного округа по критерию тарифов на электроэнергию.

10 регионов с самой низкой стоимостью электроэнергии

Тариф, руб./кВт/ч

Средний тариф в группе

Средний тариф в РФ

Отличие от среднего тарифа по РФ, %

1.Республика Хакасия

2.Мурманская область



3.Иркутская область



4.Самарская область



5.Санкт-Петербург





7.Республика Татарстан



8.Калининградская область



9.Удмуртская Республика



10.Новосибирская область



Таблица 1. Данные за второе полугодие 2015 года

10 регионов с самой высокой стоимостью электроэнергии

Тариф, руб./кВт/ч

Средний тариф в группе

Средний тариф в РФ

Отличие от среднего тарифа по РФ, в руб./кВт/ч

Отличие от среднего тарифа по РФ,

85.Республика Саха (Якутия)

84.Архангельская область



83.Магаданская область



82.Камчатский край



81.Ростовская область



80.Республика Марий Эл



79.Тамбовская область



78.Пензенская область



77.Республика Калмыкия



76.Краснодарский край



Таблица 2. Данные за второе полугодие 2015 года

В топ-10 регионов с самой низкой стоимостью электроэнергии четыре из десяти находятся в Сибирском федеральном округе (Республика Хакасия, Иркутская область, Красноярский край, Новосибирская область). Остальные регионы поровну распределены в Северо-Западном ФО (Мурманская область, Санкт-Петербург и Калининградская область), и Приволжском федеральном округе (Самарская область, Республика Татарстан, Удмуртская республика).

В топ-10 регионов с самой высокой стоимостью электроэнергии три из десяти находятся в Дальневосточном федеральном округе (Республика Саха (Якутия), Магаданская область, Камчатский край). Для данных регионов характерна территориальная отдаленность и большие расстояния обслуживания. Астраханская область, имеющая второй по величине тариф на электроэнергию в России, также относится к территориям, для которых характерны большие расстояния обслуживания и дорогая топливная составляющая. Остальные регионы поровну распределены в Южном и Приволжском ФО (Ростовская область, Краснодарский край, Республика Калмыкия, Республика Марий Эл, Тамбовская и Пензенская области).

На основании полученных рейтингов регионов проведем сравнительную оценку годового экономического эффекта (или экономических потерь) от размещения инвестиционного проекта в том или ином регионе России. Для этого экономический эффект/убыток был рассчитан на основе типового проекта промышленного предприятия, средняя величина электропотребления которого составляет 30 млн кВт/ч в год (рисунок 4).

Ежегодный экономический эффект или убыток от размещения типового проекта


Рисунок 4

Как видно из диаграммы, величина относительной экономии от размещения проекта, например, в Республике Хакасия или в Мурманской области может достигать 34 млн руб. в год. А вот при размещении проекта в Республике Саха или Архангельской области величина относительного убытка может достигать 80 млн руб. ежегодно. В случае расчета экономической эффективности для предприятия, имеющего более высокие объемы потребления, экономический эффект/убыток будет меняться в пропорциональной прогрессии.

В качестве заключительного вывода можно констатировать, что учет фактора региональной стоимости электроэнергии в процессе выбора региона размещения площадки инвестиционного проекта, имеет существенное влияние на эффективность проекта в целом, как в краткосрочном, так и в стратегическом периоде.

Свет / Тарифы на электроэнергию

Что такое тарифы на электроэнергию для населения, кто их устанавливает, как часто они меняются и какие бывают? ЭнергоВОПРОС.ру отвечает на эти вопросы, а так же публикует действующие тарифы на электроэнергию в крупнейших российских городах.

Для начала: если вы зашли на эту страничку, поскольку искали действующие тарифы на электроэнергию, то посмотрите в списке из 25 крупнейших российских городов. Скорее всего, ваш город там найдется.

Тарифы на электроэнергию в 25 крупнейших российских городах. Действуют с 1 января 2018 года

Тарифы для домов с газовыми плитами, руб/кВт.ч.

Тарифы для домов с электроплитами, руб/кВт.ч.

тарифы с разбивкой день/ночь и пик/полупик/ночь (необходимо пройти по ссылке)
Москва 5.47 4.37
Санкт-Петербург 4.61 3.46
Барнаул 3.99 3.25
Владивосток 3.74 2.99
Волгоград 4.22 2.96
Воронеж 3.74 2.62
Екатеринбург 3.96 2.77
Ижевск 3.75 2.62
Иркутск 1.08 1.08
Казань 3.75 2.62
Краснодар 4.69 3.28
Красноярск 2.52* 1.76*
Нижний Новгород 3.64* 2.62*
Новосибирск 2.60 2.60
Омск 3.92 2.74
Пермь 3.99 2.85
Ростов-на-Дону 3.89* 2.72*
Самара 4.06 2.84
Саратов 3.48 2.44
Тольятти 4.06 2.84
Тюмень 2.82 1.98
Ульяновск 3.74 2.62
Уфа 3.06 2.14
Хабаровск 4.51 3.15
Челябинск 3.19 2.23

* тарифы на электроэнергию в пределах социальной нормы потребления

Чтобы перейти к списку всех регионов, для которых мы публикуем тарифы на электроэнергию, .

Что такое тарифы на электроэнергию?

В законе «Об электроэнергетике» есть такое определение: цены (тарифы ) в электроэнергетике — система ценовых ставок, по которым осуществляются расчеты за электрическую энергию (мощность ), а также за услуги, оказываемые на оптовом и розничных рынках (далее — цены (тарифы )).

Если же говорить по-простому, применительно к населению, то тарифами мы называем стоимость потребляемого нами электричества. Объем потребленной электроэнергии измеряется в киловатт-часах (кВт .ч). Если, допустим у вас есть утюг мощность один киловатт, и вы его использовали непрерывно в течении четырех часов, то у вас «нагорит » 4кВт.ч. Стоимость каждого из этих кВт.ч установлена тарифом.

Система тарифов на электроэнергию для населения в России достаточно громоздка, но давайте в ней вместе разберемся.

Тарифы на электроэнергию: в городе и сельской местности

Во-первых, тарифы на электроэнергию зависят от типа населенного пункта, в котором вы проживаете. Если вы живете в сельской местности, то тариф у вас будет на 30% ниже, чем в городе.

В этот вопросе, впрочем, есть одна тонкость. Действие льготного, сниженного тарифа распространяется лишь на сельские населенные пункты. Если же дачный или коттеджный поселок (СНТ , ДНТ и тому подобное) не имеет статуса сельского муниципального образования (как вариант — не располагается на территории сельского населенного пункта), то его жители обязаны платить за электроэнергию по городскому тарифу. То же самое касается «поселков городского типа» — хоть многие из них мало отличаются от сел и деревень по уровню благоустройства и образу жизни, платить за свет, тем не менее их жителям приходится по городскому тарифу.

Тарифы на электроэнергию для домов газовыми плитами и электрическими плитами (электроотопительными установками)

Тарифы на электроэнергию для населения, проживающего в городских населенных пунктах, в свою очередь, делятся на тарифы для домов с газовыми плитами и тарифы для домов с электроплитами (электроотопительными установками).

Считается, что поскольку жители домов с электроплитами тратят электроэнергии больше, то им необходимо компенсировать часть расходов на свет, поставляя электроэнергию по сниженному тарифу. Таким образом, в домах с электрическими плитами киловатт-час стоит на 30% дешевле, чем в домах с газовыми.

Здесь, опять же, есть несколько важных дополнительных обстоятельства. Не секрет, что многие владельцы частных домов, отчаявшись газифицировать свое жилище (а в некоторых случаях- и даже не надеясь на это) налаживают в доме электротопление. Естественно, платить за свет в таких случаях хотелось бы по сниженному тарифу. Тому, что предусмотрен для домов с электроплитами (электроотопительными приборами).

Проблема, в том, что «автоматически » сниженный на 30% тариф на электроэнергию получают лишь жители многоквартирных домов, оборудованных электроплитами в соответствии с проектом. В случае же если вы самостоятельно уставили электроплиту в старой многоэтажке, где нет газа, или поставили электрокотел в частном доме - вам придется пройти долгий путь согласований, прежде чем удастся перейти на сниженный тариф.

Для начала надо составить проект на электроснабжение, включив в него электроплиту и (или ) другие электроприборы. Подать в вашу электросетевую компанию соответствующую заявку, приложив к ней электропроект. Получить от них Технические условия на подключение к электросетям. Выполнить ТУ. Получить от электросетей акт, подтверждающий это. И лишь затем вы можете обратиться к вашему гарантирующему поставщику с заявлением о переводе электроснабжения на тариф для домов оборудованных электроплитами.

И главное: все это применимо лишь для домов в черте города. Для населения сельской местности градация тарифов на электроэнергию в зависимости от того, есть ли у них газ в доме или нет, не предусмотрено.

Тарифы на электроэнергию: единый, двухзонный «день -ночь» и трехзонный

Единым (иногда — одноставочным) называется тариф на электроэнергию, по которому цена на электроэнергию одинакова в течении любого времени суток.

Двухзонный тариф на электроэнергию подразумевает, что в разные интервалы времени (временные зоны) в течении суток электроэнергия стоит по-разному. А именно — ночью существенно дешевле чем днем. Дневной тариф действует с 7 часов утра до 23 часов вечера. Ночной тариф - с 23 часов до 7 часов.

Тариф на электроэнергию, дифференциированный по трем зонам суток, предусматривает различные ставки в так называемую «пиковую зону» (с 7 до 9 и с 17 до 20 часов), полупиковую зону (9 до 17 и с 20 до 23 часов) и ночную зону (с 23 до 7 часов).

Самое простое - это, конечно, платить по одноставочному тарифу. Что и делает подавляющее большинство российских граждан. В то же время, подразумевается, что перейдя на двух зонный или трех зонный тариф жители могут неплохо сэкономить. Ведь ночью цена на электроэнергию в таком случае будет заметно ниже. И если вы включаете стиральную машину и посудомойку по ночам, то ваши расходы на электроэнергию заметно сократятся.

Однако есть несколько обстоятельств, заметно снижающих привлекательность многоставочных тарифов. Во-первых, для того, чтобы перейти на них, необходимо иметь современный электронный счетчик электроэнергии (а не старый индукционный). Замена счетчика будет стоить порядка двух-трех тысяч рублей.

А во-вторых, многие двухтарифные счетчики стали однотарифными после того, как в 2010 году был отменен переход на зимнее время — запрограммированные в счетчиках суточные интервалы перестали совпадать с реальными. А для того, чтобы снова получить возможность оплачивать свет по несколькими раздельным тарифам, необходимо пройти нудную и не то чтобы совсем дешевую процедуру перепрограммирования.

В 2014 году в России вновь была проведена «реформа времени», стрелки часов перевели на час вперед. В связи в этим двух- и трехзонные счетчики электроэнергии вновь необходимо перепрограммировать. И что будет дальше в России со временем — не знает, похоже, никто. Резюме: с установкой двухзонных (или как их называют двухтарифных) счетчиков спешить, видимо, не стоит.

Тарифы и социальная норма потребления электроэнергии

Напоследок следует упомянуть так же о том, что в ближайшее время тарифы на электроэнергию для населения станут еще более запутанными. И спасибо стоит за это сказать грядущему введению социальной нормы потребления электроэнергии. Суть этой идеи в том, что определенное количество электричества семья может потребить по «сниженному », социальному тарифу. А все, что сверх «нормы » будет уже по заметно (до 30%) более высокому тарифу.

Соответственно, все описанные выше градации тарифов удвоятся. То есть, если сейчас одноставочный тариф на электроэнергию для населения в сельской местности един, то с введением социальной нормы, их станет два - в пределах и сверх этой самой социальной нормы.

Кроме того, социальная норма привязывается к количеству официально зарегистрированных на жилой площади человек. Соответственно, при расчете платы за электроэнергию россиянам придется не просто умножать количество потребленных киловатт-часов на тариф, но еще и подсчитывать, исходя из количества проживающих, какая часть электроэнергии попадает в социальную норму, а какая - идет сверх.

Тарифы на электроэнергию для потребителей, приравненных к населению

  • объединенные хозяйственные постройки граждан, жилые зоны при воинских частях, исправительно-трудовых учреждениях (рассчитываются по общему счетчику на вводе);
  • исполнители коммунальных услуг (ТСЖ , ЖСК, потребительские кооперативы, управляющие компании, ИП, прочие), которые приобретают электроэнергию в целях оказания услуг электроснабжения собственникам и нанимателям жилых помещений);
  • садоводческие, дачные, огороднические некоммерческие объединения граждан;
  • некоммерческие объединения граждан (кооперативы , стоянки, гаражно-строительные комплексы);
  • религиозные организации, которые содержатся за счет прихожан.

Для всех прочих, помимо населения и приравненных к нему категорий потребителей, стоимость электроэнергии определяется рыночным путем.

Кто и когда утверждает тарифы на электроэнергию

Тарифы на электрическую энергию устанавливаются местными органами исполнительной власти в области регулирования тарифов (региональные энергетические комиссии, департаменты цен и тарифов, управление по тарифам и ценам и прочие).

Расчет тарифа для категории потребителей «Население » и приравненных к нему категорий производится на основе методик, разработанных Федеральной службой тарифов. После того, как тариф рассчитан, местный орган исполнительной власти обязан выпустить соответствующее постановление, опубликовать его в средствах массовой информации, а также на сайте самого местного органа исполнительной власти.

Обычно тарифы на электроэнергию меняются один раз в год. Раньше изменение тарифа происходило в январе, однако несколько лет назад повышение тарифов было перенесено на середину года — июль. Такое изменение срока пересчета тарифов связано со стремлением органов исполнительной власти ограничить рост инфляции, которая, обыкновенно, «разгоняется » в начале года.

Тарифы на электроэнергию в крупнейших российских регионах

А
Б
В
Д
З
И
К

Когда мы говорим о стоимости электроэнергии, произведенной на основе ВИЭ, сложно утверждать что-либо без многочисленных оговорок: при условии использования качественного оборудования, при условии качественного проектирования, в зависимости от географии проекта и т.д. Но если отбросить все эти прописные истины, то простой ответ на поставленный вопрос будет такой – сейчас самой дешевой в мире является энергия ветра.

В ноябре инвестиционный банк Lazard опубликовал свой очередной ежегодный доклад «Приведенная стоимость энергии» – уже одиннадцатый по счету. В данном докладе организация традиционно исследует расходы на строительство и эксплуатацию электростанций и генерирующих установок малой мощности, использующих различные источники энергии (кроме энергии воды). А также проводит расчет и анализ чувствительности приведенной стоимости энергии к налоговым льготам, стоимости топлива, стоимости капитала и другим факторам.

Согласно Lazard, без учета субсидирования производство 1 МВт*часа электроэнергии обойдется дешевле всего в случае использования энергии ветра – от 30 до 60 долларов США (то есть, от 1,8 рублей за 1 кВт*час). Второе место по минимальной стоимости занимает газ – здесь приведенная стоимость 1 МВт*часа начинается от 42 долларов (от 2,5 рублей за 1 кВт*час). Солнечная энергетика практически делит второе место вместе с газовой – стоимость промышленной солнечной генерации обойдется в 43 доллара за 1 МВт*час и более. Стоимость 1 МВт*часа на угле находится в пределах от 60 до 143 долларов (3,6 – 8,6 рублей за кВт*час). Дороже всего стоят дизельная генерация и генерация за счет солнечных панелей на крышах домов – соответственно, до 281 и 319 долларов за 1 МВт*час.

Приведенная стоимость энергии (Levelized cost of energy, LCOE) обычно включает в себя так называемые полные издержки – капитальные расходы (стоимость всего оборудования и работ по его возведению), фиксированные и переменные операционные расходы (обслуживание и ремонт) и расходы на топливо (при его наличии). Но здесь, конечно, следует учитывать, что речь идет о стоимости электроэнергии, производимой на новых электростанциях. То есть, производство электричества за счет газа на старых мощностях может обходиться дешевле (в России электроэнергия также будет обходиться дешевле, учитывая низкие внутренние цены на ископаемое топливо). Помимо перечисленных видов издержек, в LCOE учитывается объем электроэнергии, производимый электростанцией, а также стоимость капитала и срок эксплуатации объекта генерации.

Конечно, многие апологеты ископаемого топлива пытаются оспаривать результаты подобных исследований. Один из их аргументов заключается в том, что солнце и ветер – непостоянные источники энергии, то есть, они не доступны 24 часа в сутки семь дней в неделю. Поэтому, согласно их логике, чтобы произвести одно и то же количество электроэнергии за счет солнца и за счет газа или угля, необходимо установить солнечные панели с номинальной мощностью, в несколько раз превышающей номинальную мощность газовой или угольной генерации. И от этого капитальные расходы в солнечной энергетике также будут в разы выше, чем в угольной или газовой. В этой логике все верно, кроме одного нюанса: в приведенной стоимости энергии уже учтен непостоянный характер некоторых ВИЭ через объем выработки электроэнергии.

Рисунок 1. Динамика приведенной стоимости ветровой энергии, долл. США за МВт*час

Помимо этого мифического недостатка показатель LCOE имеет ряд других слабых мест. Например, он никак не учитывает то, что издержки поставки электроэнергии могут зависеть от времени суток и времени года. Некоторые предпосылки (например, коэффициенты использования установленной мощности или КИУМ – отношение выработанной электроэнергии к электроэнергии, которая могла бы быть выработана при работе электростанции на проектной мощности) могут вызывать вопросы или споры. Тем не менее, следует отдавать себе отчет в том, что приведенная стоимость энергии – это лишь индикатор, и он отражает некую общую ситуацию. Он не подходит для того, чтобы делать выводы по частным случаям и, как и любой другой индикатор, имеет право на недостатки. Что никак не умаляет его достоинств и значимости.

Интересно провести аналогию с таким показателем, как ВВП, который обладает огромным множеством недостатков, но при этом не теряет своей актуальности в качестве индикатора уровня экономического прогресса. Во-первых, ВВП не отражает качество жизни в стране, хотя этот аспект становится все более и более важным. Во-вторых, деятельность иностранных филиалов транснациональных компаний учитывается в ВВП стран их пребывания, а не происхождения, что несколько искажает общую картину. В-третьих, в разных странах теневой сектор экономики имеет разную степень распространения, следовательно, и ВВП далеко не всегда отражает реальный уровень экономического развития. Некоторые страны, в которых легализованы такие традиционно «теневые» отрасли, как наркоторговля и проституция, учитывают эти отрасли в своем ВВП. Таким образом, ВВП весьма плох, и эксперты уже не один год пытаются найти ему альтернативу. В настоящий момент существует достаточно много индексов и рейтингов конкурентоспособности стран, качества жизни, устойчивого развития и т.д., однако их появление едва ли подорвало авторитет ВВП – ничего проще и понятнее валового внутреннего продукта пока так и не было придумано. Кстати, Саймон Кузнец разработал концепцию ВВП всего за несколько месяцев.

Расчеты банка Lazard не являются единственными в своем роде, и их есть с чем сравнить. В открытом доступе можно найти десятки оценок приведенной стоимости энергии, выполненных в течение последнего десятилетия такими авторитетными организациями, как Международное энергетическое агентство (МЭА), Международное агентство по возобновляемым источникам энергии (IRENA), Национальная лаборатория возобновляемой энергетики Министерства энергетики США (NREL) и др. Однако ни одна из этих организаций не проводила скрупулезные расчеты на ежегодной основе в течение многих лет подряд, причем не только для отдельных ВИЭ, но и для традиционной энергетики. Таким образом, исследования Lazard можно заслуженно считать уникальными в своей нише.

Согласно исследованию Института систем солнечной энергетики Общества им. Фраунгофера, ветровая электроэнергия стоит от 4,5 евро (3,2 рублей) за 1 кВт*час. Это лишь немногим дороже производства электроэнергии на буром угле (от 3,8 евро или от 2,8 рублей за 1 кВт*час). По данным Bloombeg, использованным в совместном докладе данного агентства со Всемирным энергетическим советом, в 2013 году самой дешевой в мире являлась электроэнергия, производимая за счет энергии воды, биогаза и свалочного газа, геотермальных источников, а также энергии ветра. Производство 1 МВт*часа ветровой электроэнергии при этом стоило примерно 45 долларов США. В совместной работе МЭА и Агентства по ядерной энергетике (АЯЭ) ОЭСР самой дешевой энергией признана атомная – от 29 долларов за МВт*час (что, конечно, вызывает множество вопросов) . Хотя ветровая энергетика в этой работе также оценена очень дешево – от 33 долларов за 1 МВт*час. При этом нужно обратить внимание на то, что эти исследования являются более ранними – исследование Общества им. Фраунгофера датировано 2013 годом, данные Bloomberg – также 2013 годом, исследование МЭА и АЯЭ – 2015 годом.

Рисунок 2. Динамика приведенной стоимости солнечной энергии, долл. США за МВт*час

А за последние годы стоимость ветровой и солнечной энергии существенно снизилась. Согласно

Запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Согласитесь, было бы неплохо взамен традиционных источников энергии использовать альтернативные, чтобы не зависеть от поставщиков газа и электроэнергии в своем регионе. Но вы не знаете, с чего начинать?

Мы поможем вам разобраться с основными источниками возобновляемой энергии — в этом материале мы рассмотрели лучшие эко-технологии. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.

В нашей статье рассмотрены простые способы сборки теплового насоса, ветрогенератора и солнечных батарей, подобраны фотоиллюстрации отдельных этапов процесса. Для наглядности материал снабжен видеороликами по изготовлению экологически чистых установок.

«Зеленые технологии» позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.

С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница — предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.

Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.

Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Галерея изображений

Принцип работы системы солнечного электроснабжения

Понимание назначения каждого из элементов системы позволит представить ее работу в целом.

Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
  • Аккумуляторы. Одной надолго не хватит, поэтому система может насчитывать до десятка таких устройств. Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор . Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью 3-5 кВт.

Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Изготовление солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.

Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.

Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

Шаг #1 — сборка корпуса солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло

Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.

По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.

Правильно выполненные отверстия с шагом 0,15-0,20 м предохранят от перегрева элементы солнечной панели и обеспечат стабильную работу системы

Шаг #2 — соединение элементов солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.

По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.

Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений

После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Шаг #3 — сборка системы электроснабжения

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.

Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.

Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.

При установке нужно учесть следующие важные параметры:

  1. Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
  2. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
  3. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
  4. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.

Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.

Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.

В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении для вашего дома. Они не только наиболее удобны, но и экологически безопасны.

Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Галерея изображений

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.

В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.

По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • . Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • . Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • . Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.

При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.

При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.

От правильности выбора вида теплового насоса во многом зависит эффективность работы системы и затраты на ее устройство

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.

По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.

Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.

Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше

Сборка теплового насоса из подручных материалов

Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.

Шаг #1 — подготовка компрессора и конденсатора

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника.

Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.

После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак.

Для изготовления конденсатора использован бак из нержавеющей стали объемом 100 л, с помощью болгарки он был разрезан пополам, вмонтирован змеевик и произведена обратная сварка

Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.

Шаг #2 — изготовление испарителя

Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.

Для изготовления змеевика достаточно обмотать медную трубку вокруг стальной трубы диаметром 300-400 мм с последующей фиксацией витков перфорированным уголком

На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.

Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника.

Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.

Шаг #3 — обустройство и подключение внешнего устройства

В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин.

Из одной скважины будет происходить забор воды с последующей подачей в испаритель.

Энергию подземной воды можно использовать круглогодично. На ее температуру не влияют погодные условия и времена года

В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона.

На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.

Устройство и использование ветрогенераторов

Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось.

Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.

Галерея изображений

Установка ветрогенератора считается экономически выгодной, если среднегодовая скорость ветра превышает 6 м/с.

Монтаж лучше всего производить на возвышенностях и равнинах, идеальными местами считаются побережья рек и крупных водоемов вдали от различных инженерных коммуникаций.

Для преобразования энергии воздушных масс в электрическую применяются ветрогенераторы, наиболее продуктивные в прибрежных регионах

Классификация ветряных генераторов

Классификация ветряных генераторов зависит от следующих основных параметров:

  • В зависимости от размещения оси могут быть и горизонтальные . Горизонтальная конструкция предусматривает возможность автоповорота основной части для поиска ветра. Основное оборудование вертикального ветрогенератора расположено на земле, поэтому его легче обслуживать, при этом КПД вертикально расположенных лопастей ниже.
  • В зависимости от количества лопастей различают одно-, двух-, трех- и многолопастные ветряные генераторы . Многолопастные ветрогенераторы используют при малой скорости воздушного потока, применяются редко из-за необходимости установки редуктора.
  • В зависимости от материала, используемого для изготовления лопастей, лопасти могут быть парусными и жесткими . Лопасти парусного типа просты в изготовлении и монтаже, но требуют частой замены, так как быстро выходят из строя под воздействием резких порывов ветра.
  • В зависимости от шага винта, различают изменяемый и фиксируемый шаги . При использовании изменяемого шага можно добиться значительного увеличения диапазона рабочих скоростей ветрогенератора, но это приведет к неминуемому усложнению конструкции и увеличению ее массы.

Мощность всех видов приборов, преобразующих энергию ветра в электрический аналог, зависит от площади лопастей.

Для работы ветрогенераторам практически не нужны классические источники энергии. Использование установки мощностью около 1 мВт позволит сэкономить 92 000 баррелей нефти или 29 000 т угля за 20 лет

Устройство ветряного генератора

В любой ветряной установке присутствуют следующие основные элементы:

  • Лопасти , вращающиеся под действием ветра и обеспечивающие движение ротора;
  • Генератор , который вырабатывает переменный ток;
  • Контроллер управления лопастями , отвечает за образование переменного тока в постоянный, который требуется для зарядки аккумуляторов;
  • Аккумуляторные батареи , нужны для накопления и выравнивания электрической энергии;
  • Инвертор , выполняет обратное превращение постоянного тока в переменный, от которого работают все бытовые приборы;
  • Мачта , необходима для подъема лопастей над поверхностью земли до достижения высоты перемещения воздушных масс.

При этом генератор, и мачта считаются основными частями ветрогенератора, а все остальное – дополнительные компоненты, обеспечивающие надежную и автономную работу системы в целом

В схему любого даже самого простого ветряного генератора обязательно должны быть включены инвертор, контроллер заряда и аккумуляторные батареи

Тихоходный ветряной генератор из автогенератора

Считается, что данная конструкция является наиболее простой и доступной для самостоятельного изготовления. Она может стать как самостоятельным источником энергии, так и взять на себя часть мощности существующей системы электроснабжения.

При наличии автомобильного генератора и аккумуляторной батареи все остальные части можно изготовить из подручных материалов.

Шаг #1 — изготовление ветрового колеса

Лопасти считаются одной из наиболее важных частей ветрогенератора, так как их конструкцией определяется работа остальных узлов. Для изготовления лопастей могут быть использованы самые разные материалы – ткань, пластик, металл и даже дерево.

Мы изготовим лопасти из канализационной пластиковой трубы. Основные преимущества данного материала – дешевизна, высокая влагоустойчивость, простота обработки.

Работы выполняются в следующем порядке:

  1. Производится расчет длины лопасти, при этом диаметр пластиковой трубы должен составлять 1/5 от необходимого метража;
  2. С помощью лобзика трубу следует разрезать вдоль на 4 части;
  3. Одна часть станет шаблоном для изготовления всех последующих лопастей;
  4. После обрезки трубы заусеницы на краях необходимо обработать наждачной бумагой;
  5. Вырезанные лопасти необходимо зафиксировать на заранее приготовленном алюминиевом диске с предусмотренным креплением;
  6. Также к этому диску после переделки нужно прикрутить генератор.

Учтите, что труба из ПВХ не обладает достаточной прочностью и не сможет противостоять сильным порывам ветра. Для изготовления лопастей лучше всего применять трубу из ПВХ толщиной не менее 4 см.

Далеко не последнюю роль на величину нагрузки оказывает размер лопасти. Поэтому не лишним будет рассмотреть вариант снижения размера лопасти за счет увеличения их количества.

Лопасти ветрогенератора изготовлены по шаблону из ¼ ПВХ канализационной трубы диаметром 200 мм, разрезанной вдоль оси на 4 части

После сборки следует произвести балансировку ветрового колеса. Для этого требуется закрепить его горизонтально на штативе в закрытом помещении. Результатом правильной сборки будет неподвижность колеса.

Если же происходит вращение лопастей, необходимо выполнить их подточку абразивом доя уравновешивания конструкции.

Шаг #2 — изготовление мачты ветрогенератора

Для изготовления мачты можно использовать стальную трубу диаметром 150-200 мм. Минимальная длина мачты должна составлять 7 м. Если на участке есть препятствия для перемещения воздушных масс, то колесо ветрогенератора нужно поднять на высоту, превышающую препятствие не менее, чем на 1 м.

Колышки для закрепления растяжек и саму мачту необходимо забетонировать. В качестве растяжек можно использовать стальной либо оцинкованный трос толщиной 6-8 мм.

Растяжки мачты придадут ветрогенератору дополнительную устойчивость и снизят расходы, связанные с устройством массивного фундамента, их стоимость гораздо ниже остальных типов мачт, но требуется дополнительная площадь для растяжек

Шаг #3 — переоборудование автомобильного генератора

Переделка состоит лишь в перемотке провода статора, а также в изготовлении ротора с неодимовыми магнитами. Для начала нужно высверлить отверстия, необходимые для фиксации магнитов в полюсах ротора.

Установка магнитов выполняется с чередованием полюсов. По завершению работ межмагнитные пустоты нужно заполнить эпоксидной смолой, а сам ротор обернуть бумагой.

При перемотке катушки нужно учесть, что эффективность работы генератора будет зависеть от количества витков. Катушку необходимо мотать по трехфазной схеме в одном направлении.

Готовый генератор нужно испытать, результатом правильно выполненной работы будет показатель в 30 В при 300 оборотах генератора.

Переоборудованный генератор готов к проведению испытаний по выдаваемому номинальному напряжению перед финальным монтажом всей системы тихоходного ветрогенератора

Шаг #4- завершение сборки тихоходного ветрогенератора

Поворотная ось генератора выполняется из трубы с насаженными двумя подшипниками, а хвостовая часть вырезается из оцинкованного железа толщиной 1,2 мм.

Перед креплением генератора к мачте необходимо изготовить раму, лучше всего для этого подойдет профильная труба. При выполнении крепления нужно учесть, что минимальное расстояние от мачты до лопасти должно быть больше 0,25 м.

Под действием потока ветра происходит движение лопастей и ротора, в результате достигается вращение редуктора и получается электрическая энергия

Для работы системы после ветрогенератора нужно установить контроллер заряда, аккумуляторные батареи, а также инвертор.

Емкость батареи определяется мощностью ветрогенератора. Данный показатель зависит от размеров ветряного колеса, количества лопастей и скорости ветра.

Выводы и полезное видео по теме

Изготовление солнечной панели с пластмассовым корпусом, перечень материалов и порядок выполнения работ

Принцип работы и обзор геотермальных насосов

Переоборудование автогенератора и изготовление тихоходного ветрогенератора своими руками

Отличительной чертой альтернативных источников энергии является их экологическая чистота и безопасность.

Довольно малая мощность установок и привязка к определенным условиям местности позволяют эффективно эксплуатировать только комбинированные системы традиционных и альтернативных источников.

Ваш дом использует альтернативную энергетику в качестве источников тепла и электроэнергии? Вы самостоятельно собрали ветрогенератор или изготовили солнечные батареи? Поделитесь, пожалуйста, своим опытом в комментариях к нашей статье.

Вам также будет интересно:

Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....
Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос
22.11.2019 Желанными друзьями девушек являются бриллианты. Однако, без роскошных, богатых...
Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды
При выборе одежды мужчине в первую очередь нужно определиться со стилем, чтобы составлять...
Какого числа день бухгалтера в России: правила и традиции неофициального праздника
Вы - бухгалтер самый главный,Самый умный, самый славный,Самый лучший, без сомнений,И для...