Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Проявление туберкулеза при беременности и способы лечения

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань

Теория «тепловой смерти» Вселенной. Тепловая смерть вселенной

Попытку распространить законы термодинамики на Вселенную в целом предпринял Р.Клаузиус , выдвинувший следующие постулаты.

- Энергия Вселенной всегда постоянна, то есть Вселенная – это замкнутая система.

- Энтропия Вселенной всегда возрастает.

Если мы примем второй постулат, то нам надо признать, что все процессы во Вселенной направлены на достижение состояния термодинамического равновесия, характеризуемого максимумом энтропии, что означает наибольшую степень хаоса, дезорганизации, энергетическое уравновешивание. В этом случае во Вселенной наступает тепловая смерть и никакой полезной работы, никаких новых процессов или образований в ней производиться не будет (не будут светить звезды, образовываться новые звезды и планеты, остановится эволюция вселенной).

С этой мрачной перспективой были не согласны многие ученые, предполагавшие, что наряду с энтропийными процессами во Вселенной должны происходить и антиэнтропийные процессы, которые препятствуют тепловой смерти Вселенной.

Среди таких ученых был и Л.Больцман, который предположил, что для небольшого числа частиц второйзакон термодинамики не должен применяться , ибо в этом случае нельзя говорить о состоянии равновесия системы. При этом наша часть Вселенной должна рассматриваться как небольшая часть бесконечной Вселенной. А для такой небольшой области допустимы небольшие флуктуационные (случайные) отклонения от общего равновесия, благодаря чему в целом исчезает необратимая эволюция нашей части Вселенной в направлении к хаосу. Во Вселенной имеются относительно небольшие участки, порядка нашей звездной системы, которые в течение относительно небольших промежутков времени значительно отклоняются от теплового равновесия. В этих участках имеет место эволюция, то есть развитие, усовершенствование, нарушение симметрии.

В середине ХХ века новая неравновесная термодинамика, или термодинамика открытых систем , или синергетика где место закрытой изолированной системы заняло фундаментальное понятие открытой системы. Основателями этой новой науки было И.Р.Пригожин (1917-2004) и Г.Хакен (1927).

Открытая система – это система, которая обменивается с окружающей средой веществом, энергией или информацией.

Открытая система тоже производит энтропию, как и закрытая, но в отличие от закрытой, эта энтропия не накапливается в открытой системе, а выводится в окружающую среду. Использованная отработанная энергия (энергия низшего качества – тепловая при низкой температуре) рассеивается в окружающей среде и взамен ее из среды извлекается новая энергия (высокого качества, способная переходить из одной формы в другою), способная производить полезную работу.

Возникающие для этих целей материальные структуры, способные рассеивать использованную энергию и поглощать свежую, называются диссипативными . В результате такого взаимодействия система извлекает порядок из окружающей среды, одновременно внося беспорядок в эту среду. С поступлением новой энергии, вещества или информации неравновесность в системе возрастает. Прежняя взаимосвязь между элементами системы, которая определяла ее структуру, разрушается. Между элементами системы возникают новые связи, приводящие к кооперативным процессам, то есть к коллективному поведению элементов. Так схематически можно описать процессы самоорганизации в открытых системах.

В качестве примера такой системы можно взять работу лазера , с помощью которого получают мощные оптические излучения. Хаотические колебательные движения частиц такого излучения, благодаря поступлению определенной порции энергии извне производят согласованные движения. Частицы излучения начинают колебаться в одинаковой фазе, вследствие чего мощность лазерного излучения много кратно увеличивается, несоизмеримо с количеством подкаченной энергии.

Изучая процессы, происходящие в лазере, немецкий физик Г.Хакен (р.1927) назвал новое направление синергетикой, что в переводе с древнегреческого означает “совместное действие”, “взаимодействие”.

Еще одним известным примером самоорганизации могут служить химические реакции, которые изучал И.Пригожин. Самоорганизация в этих реакциях связана с поступлением в систему извне веществ, обеспечивающих эти реакции (реагентов), с одной стороны, и выведением в окружающую среду продуктов реакции, с другой стороны. Внешне такая самоорганизация может проявиться в виде периодически появляющихся концентрических волн или в периодическом изменении цвета реагируемого раствора. Подобную химическую реакцию получил и исследовал известный бельгийский химик русского происхождения И.Р.Пригожин. Свою химическую реакцию Пригожин назвал «Брюсселятор» в честь города Брюсселя, где Пригожин жил и работал, и где была впервые поставлена эта реакция.

Вот как писал об этом сам Пригожин: “Предположим, что у нас имеются молекулы двух сортов: “красные” и “синие”. Из-за хаотического движения молекул можно было бы ожидать, что в какой-то момент в левой части сосуда окажется больше “красных” молекул, а в следующий момент больше станет “синих” молекул и т.д. Цвет смеси с трудом поддается описанию: фиолетовый с беспорядочными переходами в синий и красный. Иную картину мы увидим, разглядывая химические часы: вся реакционная смесь будет иметь синий цвет, затем ее цвет резко изменится на красный, потом снова на синий и т.д. Смена окраски происходит через правильные интервалы времени. Для того чтобы одновременно изменить свой цвет, молекулы должны каким-то образом поддерживать связь между собой. Система должна вести себя как единое целое” (Пригожин И., Стенгерс И. Порядок из хаоса. М., 1986. С.202-203).

Конечно же, никакого «сговора» между молекулами в прямом смысле этого слова нет и быть не могло. Дело в том, что в определенный момент времени все молекулы начинали колебаться в одной фазе – синего цвета, и тогда вся смесь приобретала синий цвет. Через определенный промежуток времени молекулы начинали колебаться в другой фазе – фазе красного цвета, и тогда вся смесь приобретала красный цвет и т.д., пока не заканчивалось действие реагента.

Приведем другой пример. Если взять цирковой прозрачный барабан с синими и красными шариками и начать его вращать с определенной частотой – частотой красного цвета, то мы, как и в случае с молекулами, обнаружим, что все шарики стали красными. Если мы сменим частоту вращения барабана на соответствующую синей длине волны, то увидим, что шарики посинели и т.д.

Наиболее показательным примером самоорганизации могут служить ячейки Бенара . Это маленькие шестигранные структуры, которые могут, к примеру, образоваться в слое масла на сковородке при соответствующем перепаде температур. Как только температурный режим меняется ячейки распадаются.

Таким образом, чтобы самопроизвольно выстроилась новая структура, необходимо задать соответствующие параметры среды.

Управляющие параметры – это параметры среды, которые создают граничные условия, в рамках которых существует данная открытая система (это может быть температурный режим, соответствующая концентрация веществ, частота вращения и т.п.).

Параметры порядка – это «ответ» системы на изменение управляющих параметров (перестройка системы).

Очевидно, что процесс самоорганизации может начаться не в любой системе и не при любых условиях. Рассмотрим условия, при которых может начаться процесс самоорганизации.

Необходимыми условиями для возникновения самоорганизации в различных системах являются следующие:

1. Система должна быть открытой , потому что закрытая система, в конечном счете, должна прийти в состояние максимального беспорядка, хаоса, дезорганизации в соответствии со 2 законом термодинамики;

2. Открытая система должна находиться достаточно далеко от точкитермодинамического равновесия . Если система уже находится вблизи от этой точки, то она неизбежно приблизится к ней и, в конце концов, придет в состояние полного хаоса и дезорганизации. Ибо точка термодинамического равновесия является сильным аттрактором;

3. Фундаментальным принципом самоорганизации служит «возникновение порядка через флуктуации» (И.Пригожин). Флуктуации или случайные отклонения системы от некоторого среднего положения в начале подавляются и ликвидируются системой. Однако, в открытых системах, благодаря усилению неравновесности, эти отклонения со временем возрастают, усиливаются и, в конце концов, приводят к “расшатыванию” прежнего порядка, к хаотизации системы. В состоянии неустойчивости, нестабильности система будет особенно чувствительна к начальным условиям, чувствительна к флуктуациям. В этот момент какая-то флуктуация прорывается с макроуровня системы на ее микроуровень и осуществляет выбор дальнейшего пути развития системы, дальнейшей ее перестройки. Предсказать, как поведет себя система в состоянии нестабильности, какой выбор будет ей сделан в принципе невозможно. Этот процесс характеризуется как принцип «возникновения порядка через флуктуации». Флуктуации носят случайный характер. Поэтому становится ясным, что появление нового в мире связано с действием случайных факторов.

Например, тоталитарное общество в Советском Союзе являлось прочной социальной структурой. Однако, поступающая из-за рубежа информация о жизни других обществ, торговля (обмен товарами) и т.п. стали вызывать в тоталитарном обществе отклонения в виде свободомыслия, недовольства, диссидентства и т.п. Вначале структура тоталитарного общества была в состоянии подавлять эти флуктуации, но их становилось все больше, и сила их нарастала, что привело к расшатыванию и развалу старой тоталитарной структуры и замене ее новой.

И еще один шуточный пример: Сказка про репку. Посадил дед репку. Выросла репка большая пребольшая. Настало время ее вытаскивать из земли. Дед тащил, тащил репку, но вытащить ее так и не смог. Слишком еще устойчивая система наша репка. Позвал дед на помощь бабку. Тащили они, тащили репку вместе, но вытащить так и не смогли. Флуктуации, расшатывающие репку усиливаются, но их пока еще не достаточно, чтобы разрушить систему (репку). Позвали они внучку, но тоже репку не вытащили. Затем позвали собаку Жучку, и, наконец, позвали мышку. Казалось бы, какое усилие могла сделать мышка, но она явилась «последней каплей», которая привела к качественно новому изменению системы – ее развалу (репка была вытащена из земли). Мышку можно назвать непредсказуемой случайностью, которая сыграла решающую роль, или «малой причиной больших событий»;

4. Возникновение самоорганизации опирается на положительную обратную связь . Согласно принципу положительной обратной связи, изменения, появляющиеся в системе не устраняются, а усиливаются, накапливаются, что приводит, в конце концов, к дестабилизации, расшатыванию старой структуры и замене ее на новую;

5. Процессы самоорганизации сопровождаются нарушениемсимметрии . Симметрия означает устойчивость, неизменность. Самоорганизация же предполагает асимметрию, то есть развитие, эволюцию;

6. Самоорганизация может начаться лишь в больших системах, обладающих достаточным количеством взаимодействующих между собой элементов (10 10 -10 14 элементов), то есть в системах, имеющих некоторые критические параметры . Для каждой конкретной самоорганизующейся системы эти критические параметры свои.


Лекция № 14. Основные понятия синергетики. Возможностьуправления синергетическими системами.

Взрывные, катастрофические процессы были известны человечеству издавна. Скажем, человек, путешествующий по горам знал, на основе своего эмпирического опыта, что горная лавина может обрушиться внезапно, чуть ли не от дуновения ветра или неудачно сделанного шага.

Революции и катаклизмы часто представляли собой следствия последней капли народного недовольства, последнего случайного события переполнившего чашу весов. Это были типичные малые причины больших событий.

Каждый из нас может вспомнить определенные ситуации выбора, которые стояли на жизненном пути, и в решающие жизненные моменты перед нами открывалось несколько возможностей. Все мы включены в механизмы, где в критический момент, момент перелома решающий выбор определяет случайное событие. Итак, лавинообразные процессы, социальные катаклизмы и потрясения, критические ситуации выбора на жизненном пути каждого человека.. . Можно ли подвести единую научную основу под все эти, казалось бы различные, факты? Последние 30 лет закладывается фундамент такой универсальной научной модели, которая получила название синергетики.

Как мы уже видели, синергетика основана на идеях системности,целостного подхода к миру, нелинейности (то есть много вариантности), необратимости , глубинной взаимосвязи хаоса и порядка . Синергетика дает нам образ сложноорганизованного мира , который является не ставшим, а становящимся, не просто существующим, а непрерывно возникающим . Этот мир развивается по нелинейным законам , он полон неожиданных , непредсказуемых поворотов, связанных с выбором дальнейшего пути развития.

Предметом синергетики являются механизмы самоорганизации . Это механизмы образования и разрушения структур, механизмы, обеспечивающие переход от хаоса к порядку и обратно. Эти механизмы не зависят от конкретной природы элементов систем. Они присущи неживому миру и природе, человеку и социуму. Синергетику поэтому считают междисциплинарным направлением научного исследования.

Синергетика, как и любая другая наука, имеет свой собственный язык, свою систему понятий. Это такие понятия как “аттрактор”, “бифуркация”, “фрактальный объект”, “детерминированный хаос” и другие. Понятия эти должны стать доступными для каждого образованного человека, тем более что им можно найти соответствующие аналоги в науке и культуре.

Основными понятиями синергетики являются понятия «хаоса» и «порядка».

Порядок – это множество элементов любой природы, между которыми существуют устойчивые (регулярные) отношения, повторяющиеся в пространстве и во времени. Например, строй солдат, марширующих на параде.

Хаос – множество элементов, между которыми нет устойчивых повторяющихся отношений. Например, бегущая в панике толпа людей.

Понятие “аттрактор” близко к понятию цели. Это понятие можно раскрыть как целеподобность, как направленность поведения системы, как устойчивое относительно конечное ее состояние. В синергетике под аттрактором понимают относительно устойчивое состояние системы, которое как бы притягиваетк себе всемногообразие траекторий системы , определяемых разными начальными условиями. Если система попадает в конус аттрактора, то она неизбежно эволюционирует к этому относительно устойчивому состоянию. Например, независимо от начального положения мяча, он скатится на дно ямы. Состояние покоя мяча на дне ямы – это аттрактор движения мяча.

Аттракторы подразделяются на простые и странные .

Простой аттрактор (аттрактор)- это предельное состояние порядка. Система выстраивает порядок и совершенствует его не до бесконечности, а до уровня, определяемой простым аттрактором.

Странный аттрактор – это предельное состояние хаотизации системы. Система хаотизируется, разваливается тоже не до бесконечности, а до уровня, определяемого странным аттрактором.

Понятие бифуркация в переводе с английского означает вилку с двумя зубцами – befork. Говорят обычно не о самой бифуркации, а о точки бифуркации . Синергетический смысл точкибифуркации таков – это точка ветвлениявозможных путей эволюции системы . Прохождениечерез точки ветвления, совершенный выбор закрывает иные пути и делает тем самымэволюционный процесс необратимым .

Нелинейную систему можно определить как систему, таящую в себе бифуркации.

Очень важным для синергетики является нелинейность . Под нелинейностью понимают:

1. Возможность выбора пути развития системы (подразумевается, что у системы существует не один путь развития, а несколько);

2. Несоизмеримость нашего воздействия на систему и получаемого в ней результата. По пословице «мышь родит гору».

То, что в синергетике называют “бифуркацией ” имеет глубокие аналоги в культуре. Когда сказочный рыцарь стоит, задумавшись у придорожного камня на развилке дорог и выбор пути определит его дальнейшую судьбу, то это и является по существу наглядно-образным представлением бифуркации в жизни человека. Эволюция биологических видов, представленная в виде эволюционного дерева , наглядно иллюстрирует ветвящиеся пути эволюции живой природы.

«Смотри - лучи солнца, не могут пробиться сквозь серое небо
и все твои мысли, молитвы о помощи...
Пути пройдены, нам некуда бежать. И осторожно, касаясь пальцем звезд,
Я понимаю … но, неизбежно то, что слишком поздно…»

Английский физик Уильям Томсон (лорд Кельвин), один из основателей термодинамики в 1852 году выдвинул гипотезу о тепловой смерти Вселенной.

"Тепловая смерть" - это термин в термодинамике, описывающий конечное состояние любой замкнутой термодинамической системы, когда все виды энергии переходят в тепловую энергию. При этом термодинамическая энтропия системы максимальна.

Тогда «тепловая смерть Вселенной» это состояние Вселенной, когда все виды энергии в ней перейдут в энергию теплового движения, которая равномерно распределится по всей Вселенной. После этого все термодинамические процессы во Вселенной должны прекратиться.

Томсон считал, что материальная Вселенная, то есть звезды, планеты и прочие небесные тела, является единой, замкнутой, изолированной системой. Ведь другой такой же Вселенной нет. А если так, то второе начало термодинамики полностью применимо ко всему космосу и, стало быть, в конце концов наш разнообразный и веселый мир ждет унылая «тепловая смерть»...

В 1865 году известный физик Р. Клаузиус , основываясь на втором законе термодинамики сделал теоретический вывод о тепловой смерти Вселенной. Согласно второму началу термодинамики, любая замкнутая физическая система, т. е. не обменивающаяся энергией с другими системами, стремится к наиболее вероятному равновесному состоянию, т.е. к состоянию теплового равновесия, что соответствует максимуму энтропии.

Рудольф Клаузиус утверждал, что хотя энергия некоторой системы и остается постоянной (первое начало термодинамики), однако с течением времени она лишается способности к превращениям, а значит и способности совершать работу. Это означает, что всякая термодинамическая система со временем "деградирует", наступает "тепловая смерть".

Он согласился с выводом Томсона и написал: «.. энтропия Вселенной стремится к некоторому максимуму. Чем больше Вселенная приближается к этому предельному состоянию, ...тем больше исчезают поводы к дальнейшим изменениям, а если это состояние было бы наконец-то достигнуто, то больше не происходило бы никаких дальнейших изменений, и Вселенная находилась бы в некотором мертвом состоянии инерции».

Теория «тепловой смерти» находилась в противоречии с ньютоновской вечной Вселенной. Действительно, если рассмотреть Вселенную как изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею уже максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.

Попытка избежать указанного противоречия гипотезы тепловой смерти Вселенной была предпринята Больцманом , который предположил, что у системы и в состоянии термодинамического равновесия могут наблюдаться небольшие изменения - флуктуации термодинамических параметров (температуры, давления, объема).

Вселенная с энергетической точки зрения уже мертва, но отдельные ее области подвержены флуктуациям.

И наша часть бесконечной Вселенной, все пространство, до которого достигает взгляд человека, находится в режиме огромной, ныне затухающей флуктуации. А если считать, что наблюдаемая Вселенная является следствием такой флуктуации, то противоречия парадокса о тепловой смерти Вселенной исчезают.

В 1909 году против тепловой смерти выступил известный шведский ученый Сванте Август Аррениус , занимавшийся вопросами образования и эволюции небесных тел.

Аррениус писал: «Если бы Клаузиус был прав, то эта «смерть тепла» за бесконечно долгое время существования мира давно бы уже наступила, чего, однако, не случилось. Или нужно допустить, что мир существует не бесконечно долго и что он имел свое начало; это, однако, противоречит первой части положения Клаузиуса, устанавливающей, что энергия мира постоянна, - ибо тогда пришлось бы допустить, что вся энергия возникла в момент творения».

В 20 веке Общая Теория Относительности А. Эйнштейна разрешила многие противоречия, существовавшие в классической физике.

Однако и в наше время в науке нет единого мнения о строении Вселенной и ее возникновении. Хотя современной космологией однозначно установлено , что Вселенная, возраст которой определен в 13,72 млрд лет, не стационарна.

Среди ученых не утихают споры о будущем Вселенной, о ее «бесконечном расширении», о существовании «скрытой материи», огромное количество которой может опровергнуть современные представления о свойствах Вселенной.

А понятие «тепловой смерти Вселенной» стало первым шагом к осознанию возможной конечности существования Вселенной, хотя и неизвестно, когда и по какому сценарию возможна её гибель.

Вряд ли среди широких слоёв населения проводились социологические опросы на тему: Чем вам интересны знания о Вселенной? Но весьма вероятно, что большинство обычных людей, которые не занимаются научными изысканиями, достижения современных учёных в области изучения Вселенной волнуют лишь в связи с одной проблемой - является ли наша Вселенная конечной и если да, то когда ожидать вселенской смерти? Однако подобные вопросы интересуют не только обывателей: вот уже почти полтора столетия споры на эту тему ведут и учёные, обсуждая теорию о тепловой смерти Вселенной.

Рост энергии ведёт к гибели?

На самом деле теория о тепловой смерти Вселенной логичным образом вытекает из термодинамики и рано или поздно должна была быть высказанной. Но она была высказана на раннем этапе современной науки, в середине XIX столетия. Суть её в том, чтобы вспомнить основные понятия и закономерности Вселенной и применить их к самой Вселенной и к происходящим в ней процессам. Итак, с точки зрения классической термодинамики можно рассматривать Вселенную как замкнутую термодинамическую систему, то есть систему, которая не обменивается энергией с другими системами.

Нет оснований полагать, рассуждают сторонники теории тепловой смерти, что Вселенная может обмениваться энергией с какой-либо внешней по отношению к ней системой, так как не существует доказательств, что есть ещё что-либо, помимо Вселенной. Тогда к Вселенной, как к любой замкнутой термодинамической системе, применимо второе начало термодинамики, являющееся одним из основных постулатов современного научного мировоззрения. Второе начало термодинамики гласит, что замкнутые термодинамические системы стремятся к наиболее вероятному равновесному состоянию, то есть к состоянию с максимальной энтропией. В случае с Вселенной это означает, что при отсутствии «каналов вывода» энергии наиболее вероятное равновесное состояние, это состояние превращение всех видов энергии в тепловую. А это означает равномерное распределение тепловой энергии по всей материи, после чего все известные макроскопические процессы во Вселенной прекратятся, Вселенная как будто будет парализована, что, разумеется, приведёт и к прекращению жизни.

Вселенная не так проста, чтобы умирать тепловой смертью

Однако расхожее мнение о том, что все учёные пессимисты и склонны рассматривать лишь самые неблагоприятные варианты, несправедливо. Как только теория тепловой смерти Вселенной была сформулирована, в научном сообществе сразу начались поиски аргументов для её опровержения. И аргументы были найдены в большом количестве. Прежде всего, и самым первым из них было мнение, что Вселенную нельзя рассматривать как систему, которая способна находиться в равновесном состоянии постоянно. Даже учитывая второе начало термодинамики Вселенная может в общем и целом достичь равновесного состояния, но отдельные её участки могут испытывать флуктуации, то есть некие выбросы энергии. Эти флуктуации и не дают запуститься процессу превращения всех видов энергии в исключительно тепловую энергию.

Другое мнение, выступающее против теории тепловой смерти, указывает на следующее обстоятельство: если бы второе начало термодинамики действительно было бы применимо ко Вселенной в абсолютной степени, то тепловая смерть уже давно наступила бы. Так как если Вселенная существует неограниченное количество времени, то накопившейся в ней энергии уже должно было хватить для тепловой смерти. Но если энергии ещё недостаточно, значит, Вселенная является нестабильной, развивающейся системой, то есть она расширяется. Следовательно, в таком случае она не может быть замкнутой термодинамической системой, так как затрачивает энергию на собственное развитие и расширение.

Наконец, современная наука оспаривает теорию тепловой смерти Вселенной с других позиций. Прежде всего это общая теория относительности , согласно которой Вселенная представляет собой систему, находящейся в переменном гравитационном поле. Из этого следует, что она нестабильна и закон возрастания энтропии, то есть установление равновесного состояния Вселенной невозможно. В конце концов, нынешние учёные сходятся в том, что познания человечества о Вселенной недостаточны для того, чтобы однозначно утверждать, что она является замкнутой термодинамической системой, то есть не имеет никаких контактов с некими внешними системами. Поэтому окончательно подтвердить или опровергнуть теорию тепловой смерти Вселенной пока что нельзя.

Александр Бабицкий


О Вселенной мы знаем пока очень мало. На самом деле, почти ничего. Но поскольку люди задумываются о том, что происходит после их смерти, смерть целой Вселенной интересует нас не меньше. За последние годы научное сообщество выдвинуло множество теорий - вы удивитесь, узнав, насколько сильно они отличаются друг от друга. Правды, само собой, не может знать никто.

1. Большое сжатие

Самая знаменитая теория о рождении Вселенной - это теория Большого взрыва. Она гласит, что вся материя изначально существовала как сингулярность - бесконечно плотная точка посреди великого ничто. А потом по непонятным причинам произошёл взрыв. Материя вырвалась наружу с невероятной скоростью и постепенно стала известной нам Вселенной.

Как вы могли догадаться, Большое сжатие - это Большой взрыв «наоборот». Вселенная постепенно расширяется под воздействием собственной гравитации, но этому должен быть предел - некая конечная точка, граница. Когда Вселенная достигнет этой границы, то прекратит расширяться и начнёт сжиматься. Тогда вся материя (планеты, звёзды, галактики, чёрные дыры -всё) снова сожмётся в одну бесконечно плотную точку.

Правда, последние данные этой теории противоречивы - учёные недавно обнаружили, что Вселенная расширяется всё быстрее.

2. Тепловая смерть Вселенной

В общем и целом Тепловая смерть - противоположность Большому сжатию. Согласно теории, гравитация способствует тому, что Вселенная продолжит расширяться в геометрической прогрессии. Галактики будут отдаляться от друга всё дальше и дальше, подобно несчастным любовникам, и всеобъемлющая чёрная пропасть между ними будет расти.

Вселенная следует тем же правилам, что и любая термодинамическая система: тепло равномерно распределяется по всему, что в ней есть. Всё вещество Вселенной равномерно распределено среди холодного, скучного и тёмного «тумана».

В конце концов все звёзды, одна за другой, вспыхнут и погаснут, а энергии для появления новых звёзд уже не будет - вселенная погаснет. Материя всё ещё останется на месте, но в форме частиц, чьё движение будет полностью хаотичным. Эти частицы будут сталкиваться друг с другом, но без обмена энергией. А люди? Люди тоже станут всего-навсего частицами посреди бескрайней пустоты.

3. Тепловая смерть плюс чёрные дыры

Согласно популярной теории, вся материя во Вселенной движется вокруг чёрных дыр: в центре почти всех известных нам галактик есть сверхмассивные чёрные дыры. Это может означать, что звёзды и даже целые галактики в итоге будут уничтожены, как только попадут в горизонт событий.

Когда-нибудь эти чёрные дыры поглотят большую часть материи, и мы останемся один на один с тёмной Вселенной. Время от времени здесь будут появляться вспышки света - это будет означать, что какой-то объект оказался достаточно близко к чёрной дыре, чтобы выделить энергию. Затем снова станет темно.

Потом более массивные чёрные дыры поглотят менее массивные и станут таким образом ещё больше. Но это ещё не конец Вселенной: чёрные дыры со временем испаряются (теряют свою массу), так как излучают то, что в современной науке получило название излучение Хокинга. И когда умрёт последняя чёрная дыра, во Вселенной останутся только равномерно распределённые частицы с излучением Хокинга.

4. Конец времени

Если и есть в этом мире хоть что-то вечное, то это, безусловно, время. Независимо от того, будет ли существовать Вселенная, время-то уж точно никуда не исчезнет - без него просто не было бы никакой возможности отличить предыдущий момент от последующего. Но что если время просто застынет? Что если того, что мы понимаем под моментами, вообще не будет? Всё застынет в одном и том же бесконечном мгновении - навсегда.

Предположим, мы живём в бесконечной Вселенной с бесконечным временем. Это значит, что всё, что может случиться, обязательно произойдёт со стопроцентной вероятностью. Такой же парадокс возникает, если вы живёте вечно. Представьте, что время вашей жизни неограниченно, поэтому всё, что только может произойти с вами, тоже обязательно произойдёт, причём бесконечное количество раз. Таким образом, если вы живёте вечно, то шанс ненадолго выбыть из строя составляет 100%, и вы потратите вечность в темноте космоса. На основании этого учёные сделали предположение: время, в конце концов, остановится.

Если бы вы могли жить вечно, чтобы испытать всё это (через миллиарды лет после гибели Земли), вы бы даже никогда и не поняли, что-то пошло не так. Время просто остановится, и, по мнению учёных, всё застынет в одном мгновении, как на фотографии - навсегда. Будет просто одно и то же мгновение. Вы бы никогда не умерли, никогда бы не состарились. Это было бы своего рода псевдобессмертие. Но вы бы никогда об этом не узнали.

5. Большой отскок

Большой отскок похож на Большое сжатие, но куда более оптимистичное. Сценарий тот же: под воздействием гравитации расширение Вселенной замедляется, и в итоге вся материя собирается в одной точке. Согласно этой теории, силы быстрого сжатия будет достаточно, чтобы случился новый Большой взрыв - и тогда появится новая, юная Вселенная. Согласно этой модели, ничто не погибнет - материя просто «перераспределится».

Но физикам и физике такое объяснение не нравится. Поэтому некоторые учёные утверждают, что, возможно, Вселенная не пройдёт весь путь обратно к сингулярности. Вместо этого она приблизится к этому состоянию максимально близко, а потом «отскочит» с помощью силы, подобной той, какая возникает, когда мяч отскакивает от пола.

Большой отскок очень похож на Большой взрыв - теоретически появится новая Вселенная. Таким образом, наша с вами Вселенная может быть не первой, а, скажем, 400 по счёту. Но нет никакого способа это доказать - как и опровергнуть.

6. Большой разрыв

Независимо от того, как именно погибнет Вселенная, учёные не стесняются для названия новой теории использовать слово «Большой». Это, кстати, ещё слабо сказано. Согласно теории Большого разрыва, невидимая сила под названием тёмная энергия заставит Вселенную расширяться быстрее. В итоге она так разгонится, что просто разорвётся на части.

Большинство теорий говорят, что Вселенная погибнет ещё очень нескоро. Но теория Большого разрыва сулит ей относительно скорую смерть - по предварительным оценкам это случится через 16 млрд лет.

Планеты и, возможно, жизнь ещё будут существовать. И этот вселенский катаклизм может разом всё погубить: разорвать всё на части или скормить космическим львам, живущим между вселенными. О том, что произойдёт, можно только догадываться. Но такой конец будет куда страшнее, чем медленная тепловая смерть.

7. Метастабильность вакуума

Теория основана на идее, что Вселенная постоянно находится в нестабильном состоянии - квантовая физика вообще говорит, что она балансирует на грани устойчивости. Некоторые учёные полагают, что через миллиарды лет Вселенная шагнёт за эту грань.

Когда это произойдёт, появится своего рода «пузырь». Думайте о нём, как об альтернативной Вселенной (хотя фактически это будет та же самая Вселенная с другими свойствами). Пузырь начнёт расширяться во всех направлениях со скоростью света и уничтожать всё, с чем соприкоснётся. И в итоге уничтожит всё.

Но не волнуйтесь: Вселенная при этом всё ещё будет существовать. Только законы физики в ней будут совершенно другими, но там тоже вполне может возникнуть жизнь. Только там не будет ничего, что мы, люди, будем в состоянии понять.

8. Временной барьер

Если мы попробуем рассчитать, какова вероятность существования мультивселенной, в которой есть бесконечное число вселенных, но немного (или совершенно) разных, то столкнёмся с той же проблемой, что и в теории о Конце времени: всё, что может случиться, обязательно случится.

Чтобы обойти эту проблему, учёные берут отдельный участок Вселенной и вычисляют вероятность его существования. Расчёты кажутся логичными, но делят Вселенную на отдельные куски - как торт. И у каждого куска есть граница, как у областей на политической карте мира. Только надо представить, что каждую страну разделяет устремляющая в небо стена.

Эта модель может существовать только в том случае, если границы - настоящие, физические, за пределы которых ничто не может выйти. Согласно расчётам, в ближайшие 3,7 млрд лет мы пересечём этот временной барьер, и для нас вселенная закончится.

Это в общих чертах - понимания физики, чтобы описать теорию более детально, у нас не хватает. У физиков, правда, тоже. Но перспектива кажется жутковатой.

9. Конца Вселенной не будет! (…мы же живём в мультивселенной, да?)

В мультивселенной бесконечные вселенные могут возникать в пределах всего существующего или за его пределами. Вселенные могут начинаться с Большого взрыва. Наша может закончиться Большим сжатием или Большим разрывом, или вообще Большим пинком (такую теорию ещё не придумали, так что если у вас есть знакомые физики, можете подкинуть им идею).

Но это не имеет значения: в мультивселенной наша Вселенная - не уникальный случай, она просто одна из многих. И хотя она может погибнуть, с мультивселенной при этом ничего особенного не случится. А значит, конца не будет.

Несмотря на то, что даже само время в других вселенных может быть совершенно другим и вести себя по-другому, новые вселенные в мультивселенной появляются всё время (извините за каламбур). Согласно физике, новых вселенных всегда будет больше, чем старых, так что в теории число вселенных постоянно растёт.

10. Вечная Вселенная

То, что Вселенная всегда была и всегда будет - одна из первых разработанных людьми концепций о её природе. Но есть и нечто посерьёзнее.

Можно предположить, что Большой взрыв был началом времени. Но возможно и то, что время существовало до него, а сингулярность и взрыв могли появиться из-за столкновения двух бран - листообразных структур пространства, формирующихся на более высоком уровне существования. Согласно этой модели, Вселенная циклична и всегда будет расширяться и сжиматься.

Теоретически мы может узнать это наверняка в ближайшие 20 лет. У учёных есть спутник «Планк» специально для наблюдений за Вселенной. Конечно, это нелегко, но учёные всё же могут понять, с чего началась наша Вселенная и чем она закончится. Теоретически, опять же.

Мы живем в странное время, когда писатели и кинематографисты буквально фонтанируют фантазиями на тему конца света. На самом же деле наш финал не будет похож на киносценарий с хэппи-эндом: если Вселенной суждено погибнуть, людей просто сметет, как песчинку с пляжа. У нас не получится остановить этот процесс. И, скорее всего, мы даже не успеем понять, что происходит.

10. Разумное разрушение

До изобретения ядерного оружия никто и подумать не мог, что одна бомба может уничтожить целый город. Однако все изменилось после атаки на Хиросиму 6 августа 1945 года. Люди впервые столкнулись с технологией такой разрушительной силы. Это привело к появлению концепции «разумного разрушения»: однажды человек сделает или изобретет нечто такое, что уничтожит Вселенную. Хорошие новости: всех наших ядерных запасов не хватит даже для того, чтобы разрушить Землю. Но кто сказал, что мы единственные разумные существа во Вселенной? .

9. Конец игры

Одна из самых шокирующих теорий относительно нашей реальности заключается в том, что жизнь — это всего лишь компьютерная симуляция . По словам философа Ника Бострома из Оксфордского университета, поскольку компьютеры постоянно совершенствуются, в какой-то момент у людей разовьются настолько мощные вычислительные способности, что они смогут сами моделировать виртуальные миры. Если до этого кто-то не выключит программу, в которой моделями являемся мы сами. Мы даже не успеем осознать, что Вселенной пришел конец.

8. Разрушение основ

По одной из теорий наша Вселенная возможна благодаря существованию физических постоянных вроде скорости света или массы протона. Если бы хоть одна из этих фундаментальных констант имела другое значение, то нас бы просто не было. Как ни странно, австралийские физики выяснили, что с момента Большого Взрыва постоянная тонкой структуры изменилась в пространстве и времени . Это означает, что и другие константы могли меняться с течением времени. И если так пойдет и дальше, то однажды Вселенная просто рассыплется на мелкие частички. А планеты и звезды взорвутся. Правда, произойдет это не раньше, чем через 3 млрд лет.

7. Столкновение с другой вселенной

Что находится за пределами нашей Вселенной? Вероятно — другие вселенные. И если теория множественных вселенных верна, то однажды может произойти великое столкновение. Не исключено, что нечто подобное уже случалось, поскольку наша Вселенная искривлена. Однако в следующий раз последствия могут быть куда более катастрофическими. Другая вселенная может существовать по физическим законам, которые отличаются от наших. Она может врезаться в нас на скорости, близкой к скорости света. Если бы мы могли наблюдать столкновение в замедленном режиме , это выглядело бы так, словно на нас падает гигантское зеркало.

6. Большое сжатие

С момента Большого Взрыва, который произошел 13,8 млрд лет назад, Вселенная расширяется. Большинство физиков считают, что Вселенная бесконечна, однако есть и противоположное мнение. Если это не так, значит, в какой-то момент она начнет сжиматься — подобно волнам, которые откатываются назад в океан. Вселенная будет уменьшаться и схлопнется в одну точку . Теория Большого сжатия подкреплена теорией относительности Эйнштейна. Однако не стоит волноваться: если нечто подобное и произойдет, то через миллиарды лет.

5. Осциллирующая Вселенная

Согласно современным представлениям, Большой Взрыв произошел из сингулярности, то есть из одной точки. Но откуда взялась эта точка? Свое объяснение предлагает теория осциллирующей Вселенной: Большой Взрыв возник после коллапса другой вселенной. Это значит, что наша Вселенная когда-нибудь вновь сожмется в одну точку и из нее возникнет новый мир. Что интересно: если теория верна, значит, мы понятия не имеем, произошла ли наша Вселенная после первого коллапса или после миллион первого .

4. Барьер смерти

Вселенная будет расширяться, пока не достигнет физического барьера . Как если бы хоккейный каток заливали большим количеством воды — и в конце концов она бы ударилась о бортики и перестала растекаться. Согласно расчетам, барьера Вселенная достигнет примерно через 3,7 млрд лет. А вероятность того, что он вообще существует, составляет 50%.

3. Большое поглощение

4 июля 2012 года Большой адронный коллайдер наконец-то подтвердил существование бозона Хиггса. Так называемое «поле Хиггса» пронизывает Вселенную. Интересно, что у этого поля могут быть разные состояния — подобно тому, как вещество может быть жидким, твердым и газообразным. Сейчас поле находится на низком энергетическом уровне, однако оно может перейти как на более высокий, так и на еще более низкий. Последний вариант, по мнению исследователей, более вероятен. Этот энергетический «провал» может быть вызван квантовой флуктуацией. В результате новое маломощное поле Хиггса образует пузырь, который начнет расширяться со скоростью света и поглощать все, что попадется у него на пути. То есть нашу Вселенную . Но у этой пессимистичной теории есть два светлых пятна. Первое — у нас в запасе имеется несколько миллиардов лет. И второе — все случится настолько быстро, что мы не успеем испугаться.

2. Большое замерзание

Сценарий, также известный как Тепловая смерть, основан на втором законе термодинамики — об увеличении энтропии в закрытых системах. Вселенная будет расширяться, а объекты в ней — удаляться друг от друга. Когда энтропия достигнет максимума, энергия будет равномерно распределена, а все процессы остановятся. Звезды остынут, материя распадется… Одним словом, все кругом перестанет работать .

1. Большой разрыв

Вселенная на 68,3% состоит из загадочной темной энергии, о которой физики знают не так уж много. До ее открытия ученые считали, что расширение Вселенной с момента Большого Взрыва либо замедлилось, либо прекратилось. Однако, наблюдая за сверхновыми, астрофизики пришли к выводу, что расширение на самом деле ускоряется, и причина тому — темная энергия. Именно она может привести к тому, что называется Большим разрывом. Этот сценарий гибели Вселенной основан на предположении, что со временем темная энергия набирает силу, все более активно «расталкивая» галактики и космические объекты, разрывая все существующие связи и структуры. Одним словом, Вселенная распадется на мельчайшие частицы . Но нас на финальное шоу не позовут — скорее всего, человечество вымрет гораздо раньше.

Вам также будет интересно:

Как определить пол ребенка?
Будущие мамочки до того, как УЗИ будет иметь возможность рассказать, кто там расположился в...
Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....
Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос
22.11.2019 Желанными друзьями девушек являются бриллианты. Однако, без роскошных, богатых...