Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Цветок для шторы своими руками

Как отстирать засохшую краску с одежды в домашних условиях Чем очистить вещь от краски

Бизнес с друзьями как брак «по залету», или Почему читать Адизеса нужно до начала проекта В случае когда один из партнеров занимает

Стенгазета поздравление с днем воспитателя

Как загадать желание, чтобы оно исполнилось

Как сделать своими руками рваные джинсы, нюансы процесса

Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос

Почему энергетическая проблема является глобальной. Энергетическая проблема человечества

Проблема энергетическая рано или поздно настигает каждое государство на планете. Запасы недр Земли не бесконечны, поэтому планирование будущего является основной задачей исследовательских организаций. На данный момент человечество не придумало альтернативу основным ресурсам, необходимым для ведения жизнедеятельности.

Основная забота человечества

Проблема энергетическая затрагивает каждую ячейку общества. Основные цели использования природных ресурсов - это:

  • обогрев жилья;
  • транспортировка грузов;
  • использование в промышленности.

Естественные источники энергии не могут в полном объёме перекрыть получаемый коэффициент полезного действия от угля, нефти, газа. Насущный вопрос экологичности переработки ископаемых в энергию также волнует все исследовательские сообщества.

Условия изменились

Проблема энергетическая сформировалась десятки лет назад после резкого роста потребления ресурсов, связанного с развитием автотранспортной промышленности.

Кризис разрастался, и были сделаны выводы, что запасов нефти хватит не более чем на 35 лет. Но это мнение поменялось после открытия новых месторождений. Развитие топливной промышленности привело к ухудшению экологии в мире, что породило появление новой проблемы: как сохранить растительность и животный мир.

Проблема энергетическая рассматривается не только как вопрос добычи и запасов ресурсов, но и как побочные эффекты от грязного производства топлива. Из-за желания обладать месторождениями между странами возникают конфликты, перерастающие в затяжную войну. регионов зависит от метода добычи энергии, от доступа к ней, месту разработки и наполнения баз под хранение ресурсов.

Решение энергетической проблемы поможет улучшить ситуацию сразу в нескольких отраслях, что актуально для всех слоев населения. Владение основной частью ресурсов дает возможности для управления странами; здесь затрагивается интерес движения к глобализации экономики.

Варианты закрытия вопроса о топливном кризисе

Основные пути решения проблем уже изучены экономистами. Пока что не существует реально действующего ответа на этот вопрос. Все варианты выхода из топливного кризиса длительны и рассчитаны на сотни лет. Но постепенно человечество осознает необходимость кардинальных действий в направлении замены традиционных методов добычи энергии на экологичные и более полезные.

Проблемы энергетического развития будут расти с ростом технологичности производств и транспорта. В некоторых регионах уже наблюдается нехватка ресурсов в энергетической отрасли. Китай, к примеру, достиг предела в развитии энергетической промышленности, а Великобритания стремится сократить эту область для восстановления экологической обстановки.

Основная же тенденция развития энергетики в мире движется к наращиванию объема поставок энергии, что неизбежно ведет к кризису. Однако у стран, затронутых топливным кризисом 70-х годов, уже выработан механизм защиты от скачков в экономике. Предприняты глобальные меры по энергосбережению, дающие положительные результаты уже в настоящее время.

Экономия расхода топлива

Энергетический кризис частично решается за счет мер сбережения. Экономически подсчитано, что единица сэкономленного топлива дешевле на одну треть добытой из недр Земли. Поэтому на каждом предприятии нашей планеты введён режим оправданной экономии энергии. В результате такой подход ведёт к улучшению показателей.

Глобальная энергетическая проблема требует объединения исследовательских институтов всего мира. По результатам экономии расхода энергии в Великобритании экономические показатели повысились в 2 раза, а в США - в 2,5. В качестве альтернативных решений развивающиеся страны проводят действия, направленные на создание энергоемких производств.

Энергетическая и сырьевая проблема присутствует в более острой форме в развивающихся странах, где потребление энергии растёт с повышением уровня жизни. Развитые страны уже приспособились к меняющимся условиям и выработали механизм защиты от резких скачков спроса потребителей. Поэтому у них показатели расхода ресурсов оптимальные и меняются незначительно.

Трудности на пути сбережения ресурсов

При оценке энергозатрат учитывается целый комплекс энергетических проблем. Одной из главных является дешевизна нефти и газа, что мешает внедрению экологически чистых преобразователей естественной энергии (солнца, движения воды, ветра океана) в электрическую. Технологии вносят существенный вклад в энергосбережение. Учёные постоянно находятся в поиске более доступных и экономически выгодных способов выработки энергии. К таким относят электромобили, солнечные батареи, аккумуляторы, изготовленные из отходов.

Наиболее интересные для экономики идеи и изобретения уже получили одобрение со стороны жителей стран Германии, Швейцарии, Франции, Великобритании. Путём замещения переработки ископаемых экологически чистыми преобразователями энергии была нехватки ресурсов. Говорить о мировом кризисе из-за ограниченных запасов ископаемых в настоящее время уже не приходится.

Варианты замещения энергий

Задачей исследовательских институтов на пути решения энергетической нехватки в определённых регионах является поиск варианта развития технологий, необходимых для регулирования дисбаланса ресурсов. Так, в пустыне лучше развивать добычу электричества из солнечных лучей, а в дождливых тропиках стараются использовать гидроэлектростанции.

Для сохранения экономических и экологических показателей на должном уровне в первую очередь стараются заменить использование первичных ресурсов: нефти и угля. Для общества более выгоден природный газ и другие альтернативные источники энергии.

Большинство преобразователей чистых энергий требует колоссальных материальных затрат на их внедрение в повседневную жизнь. К этому ещё не готовы развивающиеся страны. Частично проблема нехватки энергии решается равномерным расселением жителей мегаполисов по свободным территориям. Этот процесс должен сопровождаться постройкой новых экологичных станций по переработке естественных энергий в электричество, тепло.

Вред от первичных ресурсов

Основными угрозами для природы и человека являются добыча нефти на шельфе, выбросы продуктов сгорания в атмосферу, результаты химических и атомных реакций, открытая добыча угля. Эти процессы требуется вовсе прекратить, решением может стать развитие научной индустрии в отстающих регионах. Потребление ресурсов растёт с развитием общества, перенаселением местности и открытием мощных производств.

Глобальная энергетическая проблема — ϶ᴛᴏ проблема обеспечения человечества топливом и энергией в настоящее время и в обозримом будущем.

Локальные энергетические кризисы возникали и в доиндустриальной экономике (например, в Англии XVIII в. в связи с исчерпанием лесных ресурсов и переходом на уголь) Но как глобальная проблема нехватка энергоресурсов проявилась в 70-х гг. XX в., когда разразился энергетический кризис, выразившийся в резком повышении цены на нефть (в 14,5 раза в 1972-1981 гг.), что создало серьезные трудности для мировой экономики. Хотя многие затруднения того времени были преодолены, глобальная проблема обеспечения топливом и энергией сохраняет ϲʙᴏе значение и в наши дни.

Главной причиной возникновения глобальной энергетической проблемы следует считать быстрый рост потребления минерального топлива в XX в. Со стороны предложения он вызван открытием и эксплуатацией огромных нефтегазовых месторождений в Западной Сибири, на Аляске, на шельфе Северною моря, а со стороны спроса — увеличением автомобильного парка и ростом объема производства полимерных материалов.

Наращивание добычи топливно-энергетических ресурсов повлекло за собой серьезное ухудшение экологической ситуации (расширение открытой добычи полезных ископаемых, добыча на шельфе и др.) А рост спроса на данные ресурсы усилил конкуренцию как стран — экспортеров топливных ресурсов за лучшие условия продажи, так и между странами-импортерами за доступ к энергетическим ресурсам.

Обеспеченность мирового хозяйства топливно-энергетическими ресурсами

Вместе с тем происходит дальнейшее наращивание ресурсов минерального топлива. Под влиянием энергетического кризиса активизировались крупномасштабные геологоразведочные работы , приведшие к открытию и оϲʙᴏению новых месторождений энергоресурсов. Соответственно возросли и показатели обеспеченности важнейшими видами минерального топлива: считается, что при современном уровне добычи разведанных запасов угля должно хватить на 325 лет. природного газа — на 62 года, а нефти — на 37 лет (если в начале 70-х гг. считалось, что обеспеченность мировой экономики запасами нефти не превышает 25-30 лет; разведанные запасы угля еще в 1984 г. оценивались в 1,2 трлн т, то к концу 90-х гг. они выросли до 1,75 трлн т)

В результате преобладавшие в 70-х гг. пессимистические прогнозы обеспеченности потребностей мировой экономики в энергоносителях (так, тогда считалось, что запасов нефти хватит не более чем на 25-30 лет) сменились оптимистическими взглядами, основанными на актуальной информации.

Основные пути решения глобальной энергетической проблемы

Экстенсивный путь решения энергетической проблемы предполагает дальнейшее увеличение добычи энергоносителей и абсолютный рост энергопотребления. Этот путь остается актуальным для современной мировой экономики. Мировое энергопотребление в абсолютном выражении с 1996 по 2003 г. выросло с 12 млрд до 15,2 млрд т условного топлива. Вместе с тем ряд стран сталкивается с достижением предела собственного производства энергоносителей (Китай) либо с перспективой сокращения ϶ᴛᴏго производства (Великобритания) Такое развитие событий побуждает к поискам способов более рационального использования энергоресурсов.

На ϶ᴛᴏй основе получает импульс интенсивный путь решения энергетической проблемы, заключающийся прежде всего в увеличении производства продукции на единицу энергозатрат. Энергетический кризис 70-х гг. ускорил развитие и внедрение энергосберегающих технологий , придает импульс структурной перестройке экономики. Эти меры, наиболее последовательно проводимые развитыми странами, позволили в значительной степени смягчить последствия энергетического кризиса.

Отметим тот факт - что в современных условиях тонна сбереженного в результате сберегающих мер энергоносителя обходится в 3-4 раза дешевле, чем тонна дополнительно добытого. Это обстоятельство явилось для многих стран мощным стимулом повышения эффективности использования энергоносителей . За последнюю четверть XX в. энергоемкость хозяйства США снизилась вдвое, а Германии — в 2,5 раза.

Под воздействием энергетического кризиса развитые страны в 70-80-х гг. провели масштабную структурную перестройку экономики в направлении снижения доли энергоемких производств. Так, энергоемкость машиностроения и особенно сферы услуг в 8-10 раз ниже, чем в ТЭК или в металлургии. Энергоемкие производства ϲʙᴏрачивались и переводились в развивающиеся страны. Структурная перестройка в направлении энергосбережения приносит до 20% экономии топливно-энергетических ресурсов в расчете на единицу ВВП.

Не стоит забывать, что важным резервом повышения эффективности использования энергии будет совершенствование технологических процессов функционирования аппаратов и оборудования. Несмотря на то что ϶ᴛᴏ направление будет весьма капиталоемким, тем не менее данные затраты в 2-3 раза меньше расходов, необходимых для эквивалентного повышения добычи (производства) топлива и энергии.
Стоит отметить, что основные усилия в ϶ᴛᴏй сфере направлены на совершенствование двигателей и всего процесса использования топлива.

При всем этом многие государства с формирующимися рынками (Россия, Украина, Китай, Индия) продолжают развивать энергоемкие производства (черная и цветная металлургия, химическая промышленность и др.), а также использовать устаревшие технологии. Более того, в данных странах следует ожидать роста энергопотребления как в связи с повышением жизненного уровня и изменением образа жизни населения, так и с нехваткой у многих из данных стран средств на снижение энергоемкости хозяйства. По϶ᴛᴏму в современных условиях именно в странах с формирующимися рынками происходит рост потребления энергетических ресурсов, тогда как в развитых странах потребление сохраняется на относительно стабильном уровне. Но крайне важно иметь в виду, что энергосбережение в наибольшей степени проявило себя в промышленности, но под влиянием дешевой нефти 90-х гг. слабо сказывается на транспорте.

На современном этапе и еще на долгие годы вперед решение глобальной энергетической проблемы будет зависеть от степени снижения энергоемкости экономики, т.е. от расхода энергии на единицу произведенного ВВП.

Исходя из всего выше сказанного, мы приходим к выводу, что глобальной энергетической проблемы в ее прежнем понимании как угрозы абсолютной нехватки ресурсов в мире не существует. Важно заметить, что однако, при всем этом проблема обеспечения энергоресурсами сохраняется в модифицированном виде.

Наша планета и наше общество находятся в процессе непрекращающегося развития, а это требует от нас – людей – своевременно приспосабливаться к изменениям в окружающей среде и условиях жизни. Любые перемены ведут к возникновению новых потребностей в мировом масштабе или в отдельных регионах и использованию новейших технологий для их удовлетворения. Часто оказывается, то, что недавно считалось современным, мгновенно становится устаревшим. Производители должны обладать определенным чутьем на появление новых тенденций, чтобы во время усовершенствовать свою продукцию. Это относится и к трансформаторам, которые, казалось бы, уже не нужно подвергать каким-либо изменениям.

Одно из самых значительных событий за последние несколько десятилетий на планете Земля связано с бурным ростом населения. С 1950 по 2010 оно выросло на 2,7 млрд. человек, а к концу 2011 составило более семи млрд. Более того, ожидается, что рост населения продолжится еще в течение нескольких десятилетий и пойдет на убыль только после 2050 года, к тому времени общее количество людей увеличится еще на 35% и составит 9,2 млрд. человек. Спрос на электроэнергию растет пропорционально росту населения.

Растущая потребность в электроэнергии и электричестве

Кроме увеличения численности население возрастающий спрос на электроэнергию обусловлен становлением развивающихся стран: так, рост ВВП на 1% требует увеличения потребления энергии на 0,6% в среднем. Совокупные расходы на электроэнергию составляют около 7-8 % от общемирового ВВП и представляют собою значительные издержки. Все эти факторы заставляют задуматься об организации высокоэффективных процессов производства и поставки электроэнергии. К тому же, проводя расчеты, важно оценить весь производственный цикл и включить расходы, связанные с энергопотерями и стоимостью оборудования.

Из всей энергии, потребляемой в мире, только 15% приходится на электроэнергию, хотя для производства этого количества расходуется 38% первичных энергоресурсов. В настоящее время электричество может быть использовано во всех сферах деятельности, так как представляет собой высококачественную форму энергии. К тому же оно не загрязняет окружающую среду. Все это предопределяет рост потребности в электричестве в будущем и его все упрочняющуюся роль на энергетическом рынке. Показательными примерами являются замена нефтяного или газового центрального отопления на электротепловые насосы или внедрение электромобилей.

И хотя суммарный КПД растет, что приводит к сокращению потребления первоначальных энергоресурсов, спрос на саму электроэнергию повышается. В то время как в развитых странах на одного человека в среднем приходится около одного 1 кВт, общемировое потребление составляет только 0,3 кВт. Такая статистика указывает на дальнейший значительный рост потребности в электричестве в развивающихся странах, а значит, и увеличение спроса на оборудование, обеспечивающее высокоэффективную передачу и распределение электроэнергии.

Существует один значительный фактор, определяющий рост потребности в электричестве в мировом масштабе, - это его необходимость для функционирования информационных и телекоммуникационных систем. Современные, большие центры обработки и передачи данных, например, относятся к крупнейшим потребителям электроэнергии.

Урбанизация

Еще одной заметной тенденцией является урбанизация. Все больше и больше людей переезжают из сельской местности в большие города. К 2050 году ожидается, что две трети всего населения будут проживать там, для сравнения: сейчас в городах проживает около половины.
Согласно Отделу народонаселения ООН в настоящее время насчитывается 24 мегаполиса с населением более 10 млн. человек. Обеспечить их всем необходимым: едой, товарами и коммунальными услугами – считается основной задачей современных логистических служб. Это также относится к поставкам электроэнергии. Плотность энерговыделения в местах массовой застройки небоскребами очень высока, поэтому необходимы новые решения для безопасного и надежного проведения электросетей в центрах больших городов. Слишком высокая стоимость недвижимости не позволяет размещать подстанции в домах, поэтому их устанавливают под землей.

Одна из наиболее значимых экологических проблем, которые имеют планетарное значение, связана с действием газов, вызывающих парниковый эффект, и изменением климата. Существует несколько видов эмиссий, которые способствуют этому процессу, однако больше всего опасений вызывает углекислый газ. Чтобы избежать существенного нагревания земной поверхности в ближайшие 20 лет, требуется пересмотреть политику и остановить необратимые изменения климата. В 2010 году общемировые выбросы углекислого газа, связанные с электроэнергетикой резко увеличились на 5,3% до рекордных 30,4 гигатон. Если подобная тенденция продолжится, то ожидается увеличение выбросов до 40 гигатон к 2030 году, а это может стать причиной потепления на 3,5 C° . Тем не менее, согласно 450 сценарию МЭА, ожидается, что выбросы, связанные с энергетикой, достигнут наивысшего показателя к 2020 года, а затем снизятся до 21,5 гигатон к 2035 году.

Рациональное использование электросетей может способствовать сокращению выбросов углекислого газа. Распределительные сети обычно на 95% более эффективны, а производительность трансформаторов распределительной сети выше на 99%. Несмотря на этот факт, огромные размеры базы установленных трансформаторов объясняют, почему совокупные энергопотери составляют значительную часть потерь в распределительной сети. Поэтому даже незначительные изменения в производительности трансформаторов способны существенно сократить выбросы углекислого газа.

Производительность трансформаторов рассматривается либо с точки зрения значения уровня потерь, либо уровня их КПД.

Значения КПД сравниваются при нагрузке 50%. Государственные стандарты, определяющие уровень энергопотерь трансформаторов, в последнее время претерпевают серьезные изменения: правительство и представители энергокомпаний стараются соответствовать своим обязательствам и обязанностям в сфере энергоэффективности и климатических изменений. Для разных стран характерны различные уровни эффективности трансформаторов. Низкий и средний упразднены – все страны переходят на высокий, очень высокий и сверхвысокий уровни. Сверхвысокий КПД могут показывать только трансформаторы с сердечником из аморфного металла.

Огромные размеры базы установленных трансформаторов объясняют, почему совокупные энергопотери составляют значительную часть потерь в распределительной сети.
Из всей энергии, потребляемой в мире, только 15% приходится на электроэнергию, хотя для производства этого количества расходуется 38% первичных энергоресурсов.

Еще одним ключевым моментом в борьбе против выбросов CO2 является получение электричества с помощью природных ресурсов: энергии ветра, солнца, волн и геотермальных источников. В 2011 году возобновляемые источники энергии (кроме крупных ГЭС) составили 44% дополнительных мощностей нового поколения по всему миру. В том же году общемировые инвестиции в возобновляемы источники энергии и топлива увеличился на 17 % и достиг новых рекордных показателей – 257 млрд. долларов, что в шесть раз превосходит показатели 2004 года. Согласно докладу МАЭ, посвященному перспективам развития мировой энергетики, ожидается, что доля возобновляемых энергоресурсов, обеспечивающих потребность в первичной энергии, возрастет на 8% к 2030 году.

Стабилизация напряжения за счет возобновляемых энергоносителей, традиционно используемая в трансформаторах высокого и среднего напряжения, в настоящее время будет востребована в электросетях среднего и низкого напряжения для обеспечения локальной стабилизации.

Ключевыми движущими силами для роста доли возобновляемых энергоресурсов являются предоставление правительством льгот и снижение затрат на производство. В 2011 году
стоимость фотоэлектрических модулей упала на 50%, стоимость ветряных турбин уменьшилась на 10%. Это сократило разницу в ценах между возобновляемыми источниками и ископаемыми энергоносителями. Если эта тенденция продолжится, то согласно МАЭ к 2020 году или даже раньше будет достигнут сетевой паритет, который позволит технологиям, использующим солнечную энергию, конкурировать на рынке с традиционными ископаемыми энергоносителями.

Затраты на оборудование с учетом всего срока службы

Чтобы определиться, инвестировать или нет, обычно производят расчеты окупаемости вложений, которые должны принимать во внимание не только стоимость отдельного оборудования, но и предполагаемые расходы в течение всего срока его эксплуатации. Затраты на оборудование предполагают первоначальные затраты при его покупке, затраты, связанные с его установкой, управлением, техническим обслуживание и утилизацией, также нужно учитывать затраты на энергопотери. Несмотря на то, что трансформаторы относятся к приборам, обеспечивающим высокий КПД – обычно более 99%, энергетические потери сводятся к приличным финансовым затратам, которые значительно превышают первоначальные. В такой ситуации энергокомпании все чаще используют специально разработанный метод, получивший название общая стоимость издержек (TOC) для того, чтобы определить окупаемость инвестиций. Этот показатель выражает величины потерь на холостом ходу и при нагрузке в денежном эквиваленте. В основном эти величины зависят от затрат на электроэнергию и условий инвестирования предприятия.

Одной из основных задач объединения различных источников генерирования электрической энергии является влияние на качество электроэнергии, особенно полосы напряжения, охватывающей разноплановые местные генераторы и технические условия сетевой нагрузки. В прошлом электроснабжение имело централизованный характер благодаря однонаправленному потоку электроэнергии, и основной проблемой были спады напряжения. Тем не менее, в настоящее время, а в будущем еще в большей степени в связи с применением различных источников генерирования электроэнергии, электропоток становится все более сложным, что ведет не только к спаду напряжения, но его скачкам. А это представляет собой новый уровень регулирования напряжения: традиционно стабилизация напряжения применялась в высоко- и средневольтных трансформаторах, сейчас она необходима и в средне- и низковольтных электросетях для обеспечения местной стабилизации.

Системный контроль

Еще одним развивающимся направлением является системный контроль за распределение электроэнергии, который позволяет операторам организовать надежную распределительную сеть и определять проблемы прежде, чем произойдет поломка. Можно легко установить вид неисправностей и их расположение и сократить время аварийного простоя.
Традиционно трансформаторы распределительной сети считались пассивными элементами оборудования, но в будущем им отведена более активная роль в обеспечении сетей надежностью и эффективностью.

Перспективы на будущее

Рост населения и увеличение потребления энергии – это главные причины выброса углекислого газа, следствием которого являются нежелательные изменения в климате. Для того, чтобы не допустить дальнейшее распространение этого негативного процесса, необходимо использовать энергосберегающие компоненты в электросетях и вводить технологии с низким содержанием углерода.

Сегодня человеческая цивилизация может существовать, толь­ко производя и потребляя огромный, постоянно возрастающий объем энергии. До начала промышленной революции на рубеже XVIII-XIX вв. люди пользовались практически только возобновляемыми источниками энергии - энергией воды, ветра, растительного топлива.

Индустриаль­ное технологическое развитие потребовало преимущественно невозоб­новляемых энергоресурсов - сначала угля, а затем нефти и газа. И уголь, и нефть, и газ представляют собой углеводородное топливо, используе­мое в промышленном и сельскохозяйственном производстве, на транс­порте, в быту. Поэтому мировая энергетика XX и начала XXI столетия была и остается в значительной степени углеводородной.

Все виды углеводородного сырья содержатся в земных недрах пусть и в огромных, но все же ограниченных количествах, и могут быть ис­черпаны. Члены Римского клуба еще в 60-х годах XX в. поставили во­прос: что же будет с человечеством после наступления этой гипотети­ческой возможности?

Сегодня суть глобальной энергетической проблемы заключается в следующем. Потребление энергии в мире продолжало расти все послед­ние десятилетия, например, за 1980-2005 гг. оно выросло на 60%, а, по предварительным расчетам, к 2030 г. вырастет еще на 50%. Пока в миро­вом энергетическом балансе углеводородные источники энергии преоб­ладают, хотя отмечается рост потребления и других источников. По срав­нению с 70-ми годами XX в. в середине первого десятилетия XXI в. доля ядерной энергетики увеличилась в 6 раз, а гидроэнергетики - в 1,5 раза. Доля энергии, получаемой за счет использования нефти, за этот же пе­риод снизилась с 46,1% до 34,4 %. Однако в энергобалансе разных стран и регионов мира роль нефти как источника энергии неодинакова. Если в Северной и Южной Америке, Африке и особенно на Ближнем Востоке она выше среднемирового значения, то в Европе, на постсоветском про­странстве и в Азиатско-Тихоокеанском регионе доля нефти не превы­шает 30% от всех используемых источников энергии.

Возникновение глобальной энергетической проблемы связывали с фактором истощения мировых разведанных запасов нефти. Но в ре­альности параллельно с ростом объемов потребления и добычи нефти росли и объемы ее разведанных запасов. По данным за 1989 г., таких разведанных запасов должно было хватить на 42 года. Но и в 2007 г., когда добыча нефти существенно увеличилась, по оценкам специали­стов, разведанных запасов должно было хватить на те же 42 года. Это было связано с совершенствованием методов и технологий разведки и добычи нефти, освоением новых нефтеносных районов. Сегодня по-прежнему добывается и потребляется так называемая «дешевая нефть», залегающая в доступных для современной техники пластах. Такую нефть называют «конвенциальной» в противоположность «неконвенциальной», залегающей на больших глубинах, содержащейся в нефтя­ных песках, битумных сланцах. При современных технологиях добыча неконвенциальной нефти нерентабельна и в больших объемах не ве­дется. Разработка месторождений такой нефти дело будущего, может быть, не очень далекого. Пока нужды человечества обеспечивает конвенциальная нефть. Но доступность ее источников в разных странах также неодинакова. В экономически наиболее развитых странах мира доступность запасов дешевой нефти уменьшается, и зависимость таких стран от ее импорта возрастает даже при сокращении объемов потре­бления данного энергоносителя.

Постоянно растет потребление нефти в двух наиболее населенных странах мира - Китае и Индии. Причем обе страны не обладают соб­ственными большими разведанными запасами нефти и становятся весь­ма крупными ее импортерами. За первое десятилетие нынешнего сто­летия потребление нефти в Китае выросло в два, а в Индии в полтора раза. Пока доля нефти в энергобалансе Китая и Индии невелика, но она будет неуклонно расти хотя бы вследствие роста автопарка этих стран. Еще недавно КНР не производила собственных легковых автомобилей, сегодня же по их производству Китай отстает только от США и, вполне вероятно, вскоре их обгонит.

Все больше произведенных в стране авто­мобилей продается на внутреннем рынке. Меньшими темпами, но также неуклонно возрастает уровень автомобилизации Индии. Китайский и индийский факторы будут влиять на мировые цены на нефть, и эти стра­ны будут проявлять все больший интерес к потенциальным источникам этого энергоносителя в самых различных регионах.

На мировом нефтяном рынке, а следовательно, в мировой поли­тике, кроме стран Ближнего Востока, будет расти роль многих стран Африки, Латинской Америки и постсоветского пространства. По мере истощения источников конвенциальной нефти на суше возрастающий геополитический и экономический интерес будет вызывать морской шельф, а также Арктический бассейн, в недрах которого сосредоточе­ны крупные запасы углеводородов, причем не только нефти, но и газа.

До сих пор газ имел повышенное значение для экономики и энер­гетики отдельных стран мира. Если в странах Ближнего Востока на долю газа приходится 45% энергопотребления, в странах Европы и на постсоветском пространстве - 30%, то в АТР только 10%. Между тем газ имеет преимущество перед другими углеводородами, поскольку он более экологичен, чем нефть и особенно уголь.

Наиболее крупным месторождением природного газа обладает Россия, на долю которой приходится 25% его мировых разведанных запасов. Другими крупными «газовыми державами» являются Иран и Катар. Кроме них, на мировом газовом рынке заметную роль играют Алжир, Ливия, Азербайджан, Казахстан, Оман и ряд других стран.

По сравнению с нефтью транспортировка газа является более сложной. Большая часть нефти доставляется потребителям по трубо­проводам, в то время как пути транспортировки газа более диверсифи­цированы. Положение может измениться еще более в случае широкого использования технологий по сжижению газа, которые пока остаются дорогостоящими и мало распространенными. Однако, по оценкам спе­циалистов, запасов газа должно хватить на гораздо больший срок, чем запасов нефти.

Еще более обширны разведанные мировые запасы угля. Именно уголь пока остается основным видом энергоресурсов, используемых в АТР. Там его доля в энергобалансе составляет 50%. А в КНР данный по­казатель достигает 70%. Главная проблема заключается в том, что при сжигании угля в атмосферу выбрасывается огромное количество вред­ных веществ. Пока уголь - наиболее «грязный» из всех видов углеводо­родного топлива. Хотя ситуация постепенно меняется, появляются более экологичные и экономически более привлекательные технологии его использования, особенно в энергетике. По прогнозам специали­стов, через двадцать лет объем вырабатываемой за счет использования угля электроэнергии вырастет в два раза. Однако речь не идет о том, чтобы углем заменить другие углеводороды - нефть и газ.

В отличие от алармистских прогнозов Римского клуба, современ­ный взвешенный взгляд на перспективы решения глобальной энерге­тической проблемы более оптимистичен. Вновь повышается интерес к атомной энергетике. Если же будут разработаны экономически рен­табельные технологии получения промышленных объемов энергии за счет термоядерного синтеза, то человечество получит практически неисчерпаемый источник электроэнергии. Термоядерная энергетика может быть дополнена водородной энергетикой, которой прочат боль­шое будущее. Так или иначе, нынешним источникам энергии через не­сколько десятилетий будет найдена вполне эффективная замена. Но на протяжении первой половины XXI в. энергетическая проблема будет существовать как на глобальном, так и на региональном уровне миро­вой политики. Сегодня обостряются споры вокруг путей обеспечения энергетической безопасности. При том, что сама необходимость тако­го обеспечения ни у кого не вызывает сомнения. Представления же о способах и путях достижения данной цели у экспертов и потребителей энергоресурсов разные.

Энергетические проблемы человечества

Для того чтобы представить энергетические потребности че­ловечества и сравнить их с энергетикой процессов, происходящих в геосферах Земли, мы приводим эти энергетические величины в табл. 21.1.

Рассмотрение таблицы показывает, что у человечества есть в резерве мощные источники энергии. Однако их использование, вероятно, является делом далекого будущего. Таблица также показывает, что энергетика техногенных процессов уже стала соизмеримой с энергетикой крупных геофизических процессов.

Материалы данной главы базируются, в основном, на рабо­тах .

Природные ресурсы широко используются для получения энергии. Ископаемое топливо, радиоактивные элементы, потен­циальная энергия воды являются основными видами энергети­ческих ресурсов. При их использовании окружающей среде на­носится существенный вред.

Энергетика является основой благосостояния человечества. Во всем мире наблюдается непрерывный рост энергопотребле­ния. Например, в 50-70-х гг. XX в. среднедушевое потребление энергии возросло почти в два раза. За 200 лет глобальное по­требление энергии возросло почти в 30 раз и составило 13 Гт у. т. (тонна условного топлива (у. т.) равна 29,3 ГДж). Уровень жизни населения всех странах определяется обеспеченностью энергией, хотя обеспеченность энергией может сильно различаться, напри­мер, из-за климатических условий. Душевое потребление энергии является важнейшим показателем, характеризующим не только уровень благосостояния жителей страны, но и ее этап экономиче­ского развития. В наиболее богатых странах на душу населения приходится в год 10-14 т у.т. (США, Канада, Норвегия), в наи­более бедных - 0,3-0,4 т у. т. (Мали, Чад, Бангладеш). Абсолют­ные цифры душевого потребления топлива не дают представле­ния о том, как топливо расходуется. В странах, расположенных в тяжелых климатических условиях, имеющих значительную


485

3. Загрязнение гидросферы: тепловое загрязнение водоемов,
выбросы загрязняющих веществ, изменение режима под­
земных и поверхностных вод.

4. Загрязнение литосферы при транспортировке энергоноси­
телей и захоронении отходов, при производстве энергии.

5. Загрязнение радиоактивными и токсичными отходами
окружающей среды.

6. Изменение гидрологического режима рек гидроэлектро­
станциями и, как следствие, загрязнение на территории
водотока.

7. Создание электромагнитных полей вокруг линий электро­
передач.

8. Изменяется видовое разнообразие в районах размещения
объектов топливно-энергетического комплекса. "

9. Инициирование геологических процессов.

Топливно-энергетический комплекс поставляет в огромных количествах в окружающую среду оксид углерода, сернистый ангидрид, оксиды азота, углеводороды, сажу, тяжелые металлы, нефтепродукты, фенолы, хлориды, сульфаты и др.

Как добиться того, чтобы постоянный рост энергопотребле­ния не сопровождался ростом отрицательных последствий энер­гетики, учитывая, что в ближайшее время человечество ощутит ограниченность ископаемого топлива? В качестве путей решения проблемы можно указать следующие.

1. Экономия энергии. Степень влияния прогресса на эконо­мию энергии можно продемонстрировать на примере паро­вых машин. Как известно, КПД паровых машин 100 лет назад составлял 3-5%, а сейчас достигает 40%. Развитие мировой экономики после энергетического кризиса 70-х го­дов также показало, что на этом пути у человечества есть значительные резервы. В период с 1975 по 1985 г. энерго­емкость валового национального продукта США снизилась на 71%, Франции - на 70%, Японии - на 78%. Однако общее потребление энергии продолжало расти. Примене­ние ресурсосберегающих и энергосберегающих технологий обеспечило значительное сокращение потребления топлива и материалов в развитых странах.

Гл. 21. Экологические проблемы энергетики


2. Развитие экологически более чистых видов производства энергии.

Решить проблему, вероятно, способно развитие альтернатив­ных видов энергетики, таких как солнечная и геотермальная энергетика, ветровая энергетика, использование энергии океанов и других видов энергии. /По принятой терминологии все виды энергии, в основе которой*лежит солнечная энергия, называются возобновимыми источниками энергии. В Европе 6% энергии от ее общего потребления производится на основе использования биомассы и гидроэнергии.

Основные технологии, использующие возобновляемые источ­ники энергии, приведены в табл. 21.2.

Приведенный в таблице перечень достаточно широк, его рас­смотрение показывает, что в перспективе возобновимые виды получения энергии могут потеснить методы получения энергии, основанные на ископаемых видах топлива. В большинстве стран мира запасы возобновимых видов энергии намного превышают запасы невозобновимых видов энергии. Например, в США оцен­ки запасов общего объема энергии возобновимых видов составля­ют около 600 000 млрд баррелей нефтяного эквивалента, а оценки запасов общего объема энергии невозобновимых видов составля­ют около 45 000 млрд баррелей нефтяного эквивалента. Более реальные оценки, проведенные с учетом ограничений, наклады­ваемых на использование геотермальной и ветровой энергетики, уменьшают это превосходство запасов возобновимых видов энер­гии, но перспективность запасов сохраняется.

Пока возобновимые источники дают не более 20% общеми­рового потребления энергии. Основной вклад в эти 20% дают использование биомассы и гидроэнергетика. По мере совершен­ствования технологий возрастает вклад солнечной и ветровой энергетики. При определении перспектив развития того или иного вида энергетики встает вопрос об оценке экологического риска. Под экологическим риском подразумевается вероятность неблагоприятных для человека и биоты последствий загрязнений среды. Экологический риск включает экономические, экологи­ческие, биологические, социальные, токсикологические аспекты.

Основная часть электроэнергии производится в настоящее время на тепловых электростанциях (ТЭС). В 1989 г. в СССР на ТЭС было произведено 65%, на ГЭС - 24%, на АЭС - 11% . В 1997 г. в России доля разных источников в производ­ство электроэнергии была следующей: природный газ - 41,7%;


___________ Гл. 21 Экологические проблемы энергетики__________ 489

в десятки раз. В конечном счете, изменяется видовая структура экосистемы водоема - развитие сине-зеленых водорослей, изме­нение численности и видового состава планктона и рыбы На­пример, в заполярном озере Имандра, которое используется для охлаждения вод с Кольской АЭС, исчез холодолюбивый голец, но появилась теплолюбивая радужная форель. Известно много случаев, когда в водоемах охладителях средней полосы хоро­шо акклиматизируются рыбы теплолюбивых видов. Например, в водоеме-охладителе Березовской ТЭС акклиматизировались такие теплолюбивые виды, как пестрый толстолобик, буффало, а в водоеме охладителе Шахтинской ТЭС акклиматизировалась африканская рыба тиляпия. Иногда растительноядные теплолю­бивые виды «помогают» вести борьбу с зарастанием водоемов.

Испарительные градирни башенного типа, широко использу­емые на тепловых и атомных станциях, как оказалось, являются мощными источниками инфразвуковых шумов с частотами ме­нее 10 Гц. Излученные градирней инфразвуковые шумы слабо затухают и распространяются по акустическому каналу, сформи­рованному тепловым факелом градирни, на значительные рас­стояния. В этом состоит еще одно отрицательное воздействие ТЭС и АЭС на окружающую среду. Жители, попавшие в зону инфразвукового воздействия, могут испытывать изменения ар­териального давления и частоты сердечной деятельности.

Для тепловых электростанций характерно высокое радиаци­онное и токсичное загрязнение окружающей среды. Это обуслов­лено тем, что обычный уголь, его зола содержат микропримеси урана и ряда токсичных элементов (кадмий, кобальт, мышьяк и др.) в больших концентрациях, чем земная кора. При работе ТЭС радионуклиды и токсичные элементы поступают в атмосферу, почву, водоемы. Как следствие, радиационное загрязнение и за­грязнение токсичными элементами вокруг ТЭС, работающей на угле, выше фонового загрязнения в среднем в 10-100 раз.

Значительные территории вокруг ТЭС подвергаются дей­ствию кислотных дождей, золы, содержащей токсичные примеси. В зонах размещения ТЭС наблюдается хроническое угнетение растительности. Как следствие имеет место сокращение сельхоз­продукции, накопление токсичных элементов в растениях.

В РФ тепловые электростанции дают 90-95% общего поступ­ления выбросов в атмосферу от объектов энергетики твердых и жидких загрязнений, сернистого ангидрида, оксида азота. На­земные и водные экосистемы загрязняются, в основном, тепло­выми электростанциями.

Гл. 21. Экологические проблемы энергетики


При строительстве крупных тепловых станций или их ком­плексов загрязнение окружающей среды еще более значительно. При этом могут возникать новые эффекты, например, обуслов­ленные превышением скорости сжигания кислорода над ско­ростью его образования за счет фотосинтеза земных растений на данной территории или вызванные увеличением концентрации углекислого газа в приземном слое.

Из ископаемых источников топлива наиболее перспективным является уголь - это обусловлено тем, что его запасы огромны по сравнению с запасами нефти и газа. Главнейшие мировые запасы угля сосредоточены в России, Китае и США. В настоящее время основное количество энергии вырабатывается на ТЭС за счет использования нефтепродуктов. Таким образом, структура запасов ископаемого топлива не соответствует структуре его современного использования для производства энергии. В пер­спективе переход на новую структуру потребления ископаемого топлива вызовет значительные экологические проблемы, матери­альные затраты и крупные изменения во всей промышленности Ряд развитых стран мира уже начал структурную перестройку энергетики. Например, для концепции развития производства электроэнергии США характерно увеличение вклада угля при сокращении вклада газа и нефти.

Основные достоинства гидроэлектростанций - низкая се­бестоимость вырабатываемой электроэнергии, быстрая окупае­мость (себестоимость примерно в 4 раза ниже, а окупаемость в 3-4 раза быстрее, чем на тепловых электростанциях), высокая маневренность, что очень важно в периоды пиковых нагрузок, возможность аккумуляции энергии. Даже при полном использо­вании потенциала всех рек Земли можно обеспечить не более чет­верти современных энергетических потребностей человечества. В России пока используется менее 20% гидроэнергетического по­тенциала. Однако более полное использование гидроэнергетиче­ского потенциала РФ связано со значительными экономически­ми затратами, так как реки, перспективные для использования, расположены в труднодоступных регионах. В развитых странах эффективность использования гидроресурсов в 2-3 раза выше, чем в России, так что здесь у России есть определенные резервы.

Сооружение ГЭС на равнинных реках приводит ко многим экологическим проблемам. Водохранилища, необходимые для обеспечения равномерной работы ГЭС, вызывают изменения климата на прилегающих территориях на расстояниях до сотен километров, являются естественными накопителями загрязне­ний, в том числе радиоактивных. Если реализовать некоторые


491

Проекты ликвидации водохранилищ, то возникнет не менее слож­ная задача утилизации загрязнений, которые были накоплены в водохранилищах за длительное время. В водохранилищах раз­виваются сине-зеленые водоросли, ускоряются процессы эфтро-фикации, что приводит к ухудшению качества воды, нарушается функционирование экосистем. При строительстве водохранилищ нарушаются естественные нерестилища, происходит затопление плодородных земель, изменяется уровень подземных вод. Более перспективным является сооружение ГЭС на горных реках. Это обусловлено более высоким гидроэнергетическим потенциалом горных рек по сравнению с равнинными реками. При сооружении водохранилищ в горных районах не изымаются из землепользо­вания большие площади плодородных земель. Гидроэлектростан­ции малой и средней мощности не получили широкого распро­странения, так как удельные капиталовложения в них гораздо выше, чем в ТЭС и крупные ГЭС и АЭС. Однако в последнее время, в связи с возникшими трудностями с завозом топлива в районы Крайнего Севера и другие труднодоступные регионы, возобновился интерес к строительству гидроэлектростанций ма­лой и средней мощности. В рамках федеральной целевой про­граммы «Топливо и энергия», подпрограммы «Энергообеспече­ние районов Крайнего Севера и приравненных к ним территорий, а также мест проживания малочисленных народов Севера, Сиби­ри и Дальнего Востока за счет использования нетрадиционных возобновляемых источников энергии и местных видов топлива» начато строительство гидроэлектростанций мощностью от десят­ков Вт до десятков МВт. Десятки гидроэлектростанций малой мощности сооружены в последние пять лет на Сахалине, Кам­чатке, Крайнем Севере, Алтае, в ряде района Урала.

В ряде развитых стран высока доля электроэнергии, выра­батываемой на атомных электростанциях (АЭС). Так во Фран­ции доля энергии, вырабатываемой на атомных электростанци­ях, достигает 77% в энергообеспечении страны, в ФРГ - 34%. АЭС не вырабатывают углекислого газа, объем других загряз­нений атмосферы и земель по сравнению с ТЭС также мал. При нормальном режиме работы АЭС радиоактивное загрязнение в районах станций мало по сравнению с естественным фоном и не оказывает заметного влияния на дозы облучения населения и биоты. Количество радиоактивных веществ, образующихся в период эксплуатации АЭС, сравнительно невелико. Радиологи­ческое воздействие отходов может проявится спустя длитель­ное время и на ограниченной территории. В этом заключается

Гл. 21. Экологические проблемы энергетики


Важное преимущество АЭС перед тепловыми станциями, ток­сическое воздействие отходов которых проявляется сразу и на больших пространствах. В течение длительного времени АЭС представлялись как наиболее экологически чистый вид электро­станций и как перспективная замена ТЭС, оказывающих влияние на глобальное потепление. Однако процесс безопасной эксплу­атации АЭС еще не решен, не решена проблема захоронения радиоактивных отходов, например, долгоживущего С 14 (период полураспада составляет 5 760 лет, и поэтому он может накап­ливаться в биосфере). Углерод является основой всех органиче­ских соединений, входит в состав молекул белков, ДНК. Входя в молекулы органических соединений, С 14 является внутренним облучателем.

С другой стороны, замена основной массы ТЭС на АЭС для устранения их вклада в загрязнение атмосферы в масштабе планеты не осуществима из-за огромных экономических затрат.

За период существования ядерной энергетики произошло три крупных радиационных аварии: в 1957 г. в Великобритании (Уиндскейл), в 1979 г. в США (Три-Майл-Айленд), в 1986 г. на Чернобыльской АЭС. По площади загрязнения и величине вы­брошенной активности Чернобыльская авария является наиболее тяжелой. В результате аварии радиоактивному загрязнению под­верглась территория не только СССР, но и других стран Европы, пострадавшим регионам нанесен значительный экономический ущерб. Чернобыльская катастрофа привела к коренному изме­нению отношения населения к АЭС, прежде всего в регионах размещения станций или их возможного строительства. В ряде стран возникла проблема социальной преемственности ядерной энергетики. Психологический стресс, связанный с проживанием на загрязненных территориях, переселением пострадавшего на­селения, сохранится в течение длительного времени. Поэтому перспектива развития атомной энергетики в ближайшие годы неясна.

Ограниченные возможности атомной энергетики и гидро­энергетики, ограниченность запасов ископаемого топлива (и в перспективе - исчерпание), необходимого для работы тепловых электростанций, их мощное тепловое воздействие на атмосферу заставляют более внимательно рассмотреть нетрадиционные ис­точники получения энергии.

Некоторые страны уже достигли значительных успехов в об­ласти использования нетрадиционных методов получения энер­гии. Например, Индия занимает 3-е место в мире по суммарной


Гл. 21. Эколо?ические проблемы энергетики 493

Мощности ветровых электростанций. В районах Гималаев широ­ко развернуто строительство малых ГЭС. суммарная мощность которых уже превысила 160 МВт. В деревенских общинах Индии строятся биогазовые установки, солнечные плиты, применение которых значительно сокращает поступление продуктов сгора­ния в атмосферу. Ветродвигатели на трех перевалах в Кали­форнии (Алтамонт, Техачапи, Сан-Горгонио) имеют суммарную мощность 1 500 МВт. Ветровые установки Дании дают более 5% всей вырабатываемой в стране энергии, причем стоимость элек­троэнергии, полученной на ветроэнергетических установках, уже ниже стоимости энергии, полученной на АЭС и ТЭС.

В России реализуется комплексная программа освоения нетрадиционных источников энергии. Программа была разра­ботана на 1991-2005 гг., она предусматривала доведение доли нетрадиционных источников энергии к 2000 г. до 0,8% объема внутреннего энергопотребления. Государственная научно-техни­ческая программа «Экологически чистая энергетика» определяет направление и темпы развития фотоэлектрических преобразо­вателей. Конкретные вопросы развития нетрадиционных видов энергетики решаются в рамках федеральной целевой программы «Топливо и энергия», подпрограммы «Энергообеспечение районов Крайнего Севера и приравненных к ним территорий, а также мест проживания малочисленных народов Севера, Сибири и Дальнего Востока за счет использования нетрадиционных возобновляемых источников энергии и местных видов топлива». В России около 45% жилищ отапливается печами. В настоящее время в РФ около 70% территории с населением 10 млн человек относится к зоне децентрализованного энергоснабжения. Вы­работка электроэнергии в таких регионах производится, в основном, на бензиновых и дизельных генераторах малой мощности. Резкий рост стоимости привозного органического топлива делает удаленные районы Крайнего Севера и Дальнего Востока РФ перспективными для развития нетрадиционных источников энергии.

Солнечная энергетика

Мощность солнечной радиации, поглощенной атмосферой и земной поверхностью, составляет 10 5 ТВт (10 17 Вт). Эта вели­чина кажется огромной по сравнению с современным мировым энергопотреблением, равным 10 ТВт. Велики и другие потоки энергии у поверхности Земли. Так перенос тепла атмосферой


Гл 21. Экологические проблемы энергетики 495

Преобразователь представляет собой полупроводниковый диод большой площади. Эффективность поглощения света зависит от материала и толщины элемента Например, аморфный кремний поглощает в 50 раз эффективнее, чем кристаллический. Эффективность работы полупроводниковых преобразователей сильно зависит от чистоты материала. Чистота кремния должна составлять 99,99%, для обеспечения ее необходимы сложная технология и значительные затраты. Эффективность работы преобразователя также зависит от спектральной чувствитель­ности материала. Элементы на кристаллическом кремнии обла­дают чувствительностью в ультрафиолетовой части, видимой и в ближней инфракрасной областях солнечного спектра. Тео­ретически КПД преобразователя на кристаллическом кремнии достигает 28%.

Как уже говорилось, низкая плотность солнечного излучения является одним из препятствий его широкого использования. Для устранения этого недостатка при конструировании фото­электрических преобразователей используются различного рода концентраторы излучения. Для компенсации периодичности по­ступления солнечной энергии фотоэлектрические системы целе­сообразно включать в гибридные станции. На таких станциях в период плохих погодных условий выработка энергии может про­водиться за счет традиционных систем. Главные преимущества фотоэлектрических установок заключаются в следующем. Они не имеют движущихся частей, их конструкция очень проста, про­изводство технологично. Солнечные батареи собираются из од­нотипных модулей. Важным преимуществом фотоэлектрических преобразователей является устойчивая тенденция снижения их стоимости. В начале 90-х гг. в мире существовало около 20 круп­ных солнечных электростанций мощностью до 7 МВт, исполь­зующих фотоэлектрическое преобразование солнечной энергии.

К недостаткам фотоэлектрических преобразователей можно отнести разрушение полупроводникового материала от времени, зависимость эффективности работы системы от ее запыленно­сти, необходимость разработки сложных методов очистки бата­рей от загрязнения. Все это ограничивает срок службы фото­электрических преобразователей.

Гибридные станции, состоящие из фотоэлектрических преоб­разователей и дизельных генераторов, уже широко используются для электроснабжения на территориях, где нет распределитель­ных электрических сетей. Например, система такого типа обес­печивает электроэнергией жителей Кокосового острова, распо­ложенного в Торресовом проливе.


Гл. 21. Экологические проблемы энергетики 497

Тепловой аккумулятор, который обеспечивает смягчение
зависимости от суточной изменчивости и погодных усло­
вий;

Теплообменники, образующие нагревательный и охлади­
тельный источники тепловой машины.

Системы улавливания солнечной радиации, в зависимости от конструкции, обеспечивают разные степени концентрации. Малая степень концентрации (до 100) получается при исполь­зовании, например, параболических отражателей, ось которых перпендикулярна плоскости движения Солнца. Средняя степень концентрации (до 1000) может быть обеспечена применением фокусирующих гелиостатов, управляемых по двум степеням сво­боды. Примером такого гелиостата является зеркало в форме параболоида вращения, ось которого ориентируется на Солн­це. Высокая степень концентрации (более 1000) осуществляет­ся оптической системой, состоящей из плоских гелиостатов и параболоидного отражателя. Система аккумуляции позволяет смягчить влияние изменчивости погодных условий и суточной изменчивости. Аккумулирование может быть кратковременным для предотвращения колебаний тепловой нагрузки из-за облач­ности, суточным - для выработки электроэнергии в темное вре­мя суток и сезонным - для обеспечения энергией потребителей в неблагоприятные сезоны. Аккумуляция энергии, как правило, осуществляется за счет накопления тепла. Низкотемпературные системы аккумуляции (до 100°С), в частности водяные, широко применяются для отопления зданий и горячего водоснабжения. В низкотемпературных системах используются также фазовые переходы и обратимые реакции гидратации и сольватации солей и кислот. Для среднетемпературного аккумулирования (от 100 до 550 °С) используются гидраты оксидов щелочно-земельных металлов. Высокотемпературное аккумулирование (температура выше 550 °С) осуществляется с помощью обратимых экзоэндо-термических реакций.

Тип термодинамического цикла и рабочего тела определяется областью рабочих температур теплового двигателя.

В настоящее время идеи термодинамического преобразования реализуются в схемах двух типов: гелиостаты башенного типа и станции с распределенным приемником энергии.

На гелиостанции башенного типа энергия от каждого ге­лиостата передается оптическим способом. Управление гелиоста­тами осуществляет ЭВМ. До 80% стоимости станции составля­ет стоимость гелиостатов. Система сбора и передачи энергии в


Гл 21 Экологические проблемы энергетики 499

Солнечные станции на околоземной орбите. Конструкторы пред­полагают разместить на геосинхронной орбите солнечные бата­реи большой мощности. Размещение станции на геосинхронной орбите обеспечивает расположение станции над определенным пунктом Земли. Энергия на земную поверхность передается в форме высокочастотного электромагнитного излучения. Плот­ность солнечного излучения на геосинхронной орбите оказыва­ется выше, чем на Земле. Соответствующий выбор положения плоскости орбиты обеспечивает почти круглогодичное поступле­ние солнечной энергии на батареи станции Не возникает про­блемы очистки панелей станции и нарушения землепользования, теплового загрязнения.

Биоконверсия солнечной энергии

Биомасса, как источник энергии, используется с древнейших времен. В процессе фотосинтеза солнечная энергия запасается в виде химической энергии в зеленой массе растений. Запасенная в биомассе энергия может быть использована в виде пищи челове­ком или животными или для получения энергии в быту и произ­водстве. В настоящее время до 15% энергии в мире производится из биомассы Из одной тонны древесных опилок современные технологии позволяют получить 700 кг жидкого топлива, а в России находится 20% лесных ресурсов планеты.

Самый древний, и еще широко применяемый, способ получе­ния энергии из биомассы заключается в ее сжигании. В сельской местности до 85% энергии получают этим способом. Как топливо, биомасса имеет ряд преимуществ перед ископаемым топливом. При сжигании биомассы выделяется в 10-20 раз меньше серы и в 3-5 раз меньше золы, чем при сжигании угля. Количество углекислого газа, выделившегося при сжигании биомассы, равно количеству углекислого газа, затраченного в процессе фотосин­теза. Таким образом обеспечивается нулевой баланс эмиссии ок­сида углерода.

Энергию биомассы можно получать из специальных сель­скохозяйственных культур. Например, в субтропическом поясе России предлагается выращивать карликовые породы быстро­растущего вида папайи. С одного гектара за 6 месяцев на опыт­ных участках получают более 5 т биомассы по сухому весу, которую можно использовать для получения биогаза. Биомассу можно также использовать для получения биологически актив­ных пищевых и кормовых добавок. К перспективным видам относятся быстрорастущие деревья, растения, богатые углево­дами, которые применяются для получения этилового спирта.

Гл 21 Экологические проблемы энергетики


Для производства этилового спирта наиболее широко исполь­зуется сахарный тростник. В Бразилии чистый этанол и смесь этанола с бензином являются широко распространенным видом топлива. Такое биотопливо легко хранить и транспортировать, оно обладает высокой теплотворной способностью, более полно сгорает в двигателе. При сгорании такого топлива атмосфе­ра загрязняется гораздо меньше, чем при сжигании обычного топлива. Бразилия, приступившая к использованию этанола в качестве автомобильного топлива в 70-е гг., обладает лучшей в мире технологией его производства. К числу перспективных методов биоконверсии относится способ получения моторного топлива (метилового эфира) из семян рапса. Моторное топливо на основе рапса, обладая характеристиками, близкими к дизель­ному топливу, практически не дает выбросов вредных веществ. В Чехии производится около 1 млн т биодизельного топлива в год. В США разработан способ производства спирта из кукурузы, в Италии ведутся работы над разработкой способа рентабельного производства спирта из сорго. Около 200 автобусов в Стокгольме уже работают на спирте.

Широко распространенный способ получения энергии из био­массы заключается в получении биогаза путем анаэробного пе-ребраживания. Такой газ содержит около 70% метана. Биомета-ногенез был открыт еще в 1776 г. Вольтой, который обнаружил метан в болотном газе. Биогаз позволяет использовать газовые турбины, являющиеся самыми современными средствами теп­лоэнергетики. Для производства биогаза используются органи­ческие отходы сельского хозяйства и промышленности. Это на­правление является одним из перспективных и многообещающих способов решения проблемы энергообеспечения сельских райо­нов. Например, из 300 т сухого вещества навоза, превращенного в биогаз, выход энергии составляет около 30 т нефтяного экви­валента. Более перспективным является термохимическое преоб­разование биомассы, в котором синтетический газ получается в процессе сжигания биомассы при температуре 800-15 000 °С. Га­зотурбинные электростанции с установками газификации имеют КПД 40-45%.

В Индии, Китае эксплуатируются несколько десятков милли­онов установок для производства биогаза в сельской местности.

Биомассу для последующего получения биогаза можно вы­ращивать в водной среде, культивируя водоросли и микроводо­росли.


Гл 21 Экологические проблемы энергетики 503

Сравнительно низкая плотность, сильная изменчивость во вре­мени и высокая стоимость волновых энергетических установок.

В настоящее время накоплен значительный объем инстру­ментальных измерений ветрового волнения в Мировом океане. На основе этих данных волновая климатология определяет рай­оны с наиболее интенсивным и постоянным волнением. Потери волновой энергии за счет прибоя для земного шара оцениваются в 2 ■ 10 9 кВт. Общая длина береговой линии равна 200000 км, т. е. в среднем на метр береговой линии приходится 10 кВт. Однако существуют районы побережья, в которых средняя волновая мощность значительно выше. Они постоянно подвергаются воз­действию океанских волн, длиной 50-200 м, высотой более 2-5 м. Образование этих волн не обязательно связано с действием мест­ных ветров. Волны, возникшие в одной части океана, способны проходить огромные расстояния в сотни и тысячи миль, так как они слабо затухают в глубоком океане. Согласно некоторым оцен­кам среднегодовая мощность волн, приходящаяся на каждый метр западного побережья Великобритании, достигает 80 кВт, а полная волновая мощность побережья равна 120 ГВт, что примерно в 5 раз превышает современные потребности электро­энергии в стране. На многих участках шельфовой зоны США и Японии плотность волновой энергии составляет около 40 кВт/м.

В большинстве преобразователей волновой энергии исполь­зуют двухступенчатую схему преобразования, на первом этапе осуществляется передача энергии от волны к телу-поглотителю и решается задача концентрирования волновой энергии. На вто­ром этапе поглощенная энергия преобразуется в вид, удобный для потребления. Существует три основных типа проектов по извлечению волновой энергии. В первом используется метод по­вышения концентрации волновой энергии и превращения ее в потенциальную энергию воды. Во втором - тело с несколькими степенями свободы находится у поверхности воды. Волновые силы, действующие на тело, передают ему часть волновой энер­гии. Основным недостатком такого проекта является уязвимость тела, находящегося под действием волн. В третьем типе проектов система, поглощающая волновую энергию, находится под водой. Передача волновой энергии приемному устройству происходит под действием волнового давления или скорости. Более общей классификацией волновых преобразователей является их деле­ние на активные и пассивные. К активным типам преобразо­вателей волновой энергии относятся преобразователи, имеющие


Гл. 21 Экологические проблемы энергетики

Имени ее изобретателя. В Англии, где был предложен целый ряд усовершенствований установки, она называется осциллирующим водным столбом. Устройства подобного типа уже широко исполь­зуются для энергообеспечения автономных буйковых станций.

Сила, с которой волны воздействуют на сооружения в бе­реговой зоне, достигает нескольких тонн на квадратный метр. Это силовое воздействие тоже может быть использовано для преобразования волновой энергии. Представим себе буй с основа­нием в виде трапеции, заякоренный в прибрежной зоне. Широкая сторона трапеции обращена в сторону океана - это позволяет концентрировать волновую энергию. Эта сторона буя открыта для волн. Внутри буй разделен на секции, которые заверша­ются цилиндрами с поршнями. Волны, воздействуя на поршни, приводят в движение воздух, который в свою очередь движет воздушную турбину. При размере основания в 350 м и высоте буя в 20 м мощность составит около 100 МВт.

Преобразователи волновой энергии, в которых имеется значи­тельное число подвижных частей, чувствительны к воздействию морской воды и нерегулярных силовых нагрузок. Поэтому пред­почтение отдается системам с минимальным числом движущих­ся частей.

Параллельность берегу гребней волн в прибрежной зоне, обусловленная явлением рефракции, используется в следующем типе преобразователя волновой энергии. Цилиндр положитель­ной плавучести полностью погружается в воду. Ось цилиндра параллельна гребню падающей волны. На заданной глубине ци­линдр удерживается при помощи четырех тросов, обладающих нейтральной плавучестью. К концам тросов крепится пружин­ная нагрузка. Такая система крепления позволяет перемещаться цилиндру в горизонтальной и вертикальной плоскостях. Если гребень падающей волны параллелен оси цилиндра, то цилиндр будет совершать движение, подобное тому, которое совершают частицы воды в волне. Расположение дополнительных цилин­дров с другими параметрами позволяет расширить диапазон длин волн, в котором происходит эффективное поглощение вол­новой энергии. Полное заглубление цилиндров повышает эксплу­атационную надежность системы по сравнению со схемами, в которых движущиеся части расположены на поверхности воды.

В качестве перспективных типов преобразователей волновой энергии в последнее время рассматриваются индукционно-ем-костные преобразователи волновой энергии. В преобразователях такого типа одной обкладкой конденсатора является волновая

Гл 21 Экологические проблемы энергетики


Вам также будет интересно:

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды
При выборе одежды мужчине в первую очередь нужно определиться со стилем, чтобы составлять...
Какого числа день бухгалтера в России: правила и традиции неофициального праздника
Вы - бухгалтер самый главный,Самый умный, самый славный,Самый лучший, без сомнений,И для...
Как заинтересовать девушку по переписке – психология
Современный ритм жизни диктует свои условия. Все чаще на смену личным встречам приходит...
Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях
Современного жителя большого города сейчас мало чем удивишь. При этом, конкуренция между...
Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея
C наступлением осени в детских садах и школах проводятся праздники, посвященные этому...