Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Проявление туберкулеза при беременности и способы лечения

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань

Принцип суперпозиции сил взаимодействия точечных зарядов. Кулоновская сила является силой притяжения, если знаки зарядов разные и силой отталкивания, если знаки зарядов одинаковые

8.7. Принцип суперпозиции для электростатических сил

Вернемся к обсуждению закона Ш. Кулона. При этом мы постоянно будем использовать его аналогию с законом всемирного тяготения – раз формулировки совпадают, то и следствия из них должны совпадать. Поэтому у нас есть возможность достаточно быстро повторить основные выводы.

Прежде всего, обратим внимание, что сила взаимодействия точечных тел прямо пропорциональна величине заряда. Это обстоятельство является математическим выражением принципа суперпозиции :

сила, действующая на точечный заряд q 0 со стороны системы зарядов q 1 , q 2 , …, q k равна сумме сил, действующих со стороны каждого из зарядов q 1 , q 2 , …, q k (рис. 148)

\(\vec F_{pe3} = \vec F_1 + \vec F_2 + \ldots + \vec F_k,\qquad(1)\)

Подчеркнем, что формула закона Ш. Кулона выражает справедливость принципа суперпозиции, который является обобщением экспериментальных фактов.

Принцип суперпозиции выражает независимость сил электростатических взаимодействий, взаимодействие с одним зарядом, никак не влияет на взаимодействие с остальными.

Закон Ш. Кулона для точечных тел и принцип суперпозиции позволяют, в принципе, вычислять силы взаимодействия между заряженными телами конечных размеров. Для этого необходимо мысленно разбить каждое из тел на малые участки, каждый из которых можно рассматривать как точечный заряд (рис. 149), затем вычислить двойную сумму сил взаимодействия между всеми парами точек.

Для использования этого метода расчета силы взаимодействия, необходимо знать распределение зарядов внутри каждого из взаимодействующих тел. В отличие от гравитационного взаимодействия, во многих случая (точнее, практически всегда) распределение зарядов на телах заранее не известно. Так одно заряженное тело существенно влияет на распределение зарядов на другом, поэтому расчет сил взаимодействия между заряженными телами является еще более сложной задачей, чем расчет силы гравитационного взаимодействия. Для подтверждения этого утверждения сошлемся на существование сил притяжения между заряженным и незаряженным телом.

Так сила электростатического взаимодействия между точечными зарядами обратно пропорциональна квадрату расстояния между телами, то сила взаимодействия между равномерно заряженными сферами равна силе взаимодействия между точечными зарядами, равными зарядам сфер, и расположенными в центрах этих сфер. Аналогичный вывод справедлив и для любых сферически симметричных распределений зарядов. Иными словами - сферически симметричные заряды можно собрать в одну точку - в центр, при этом силы электростатического взаимодействия не изменятся. И. Ньютон доказал это утверждения для гравитационных сил, совсем скоро мы докажем его для электростатических взаимодействий.

Одинаковая зависимость гравитационных и электростатических сил от расстояния позволяет сравнивать эти силы между собой. Для двух одинаковых точечных тел имеющих массы m и заряды q , отношение электрической к гравитационной силе выражается формулой

\(\frac {F_{el}}{F_{gr}} = \left(\frac{1}{4 \pi \cdot \varepsilon_0} \cdot \frac{e^2}{r^2} \right) \cdot \left(\frac{r^2}{G \cdot m^2} \right) = \frac{e^2}{4 \pi \cdot \varepsilon_0 \cdot G \cdot m^2} \).

Так для двух протонов это отношение приблизительно равно 1 10 36 , а для более легких электронов даже 4 10 42 - весьма внушительные числа! Поэтому при описании взаимодействия заряженных частиц гравитационным взаимодействием пренебрегают. В наших экспериментах (со стаканчиками), гравитационные взаимодействия между ними также пренебрежимо малы, по сравнению с электрическими. Практически во всех случаях, где появляются электрические силы, гравитационные уходят на второй план. Громадность электрических сил, во многом, обуславливает их широкое применение в нашей жизни, и необходимость их изучения.

Понятие электричества. Электризация. Проводники, полупроводники и диэлектрики. Элементарный заряд и его свойства. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. Электрическое поле как проявления взаимодействия. Электрическое поле элементарного диполя.

Термин электричество происходит от греческого слова электрон (янтарь).

Электризацией называют процесс сообщения телу электрического

заряда. Этот термин ввел в 16 веке английский ученый и врач Джилберт.

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД – ЭТО ФИЗИЧЕСКАЯ СКАЛЯРНАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СВОЙСТВА ТЕЛ ИЛИ ЧАСТИЦ ВСТУПАТЬ И ЭЛЕКТРОМАГНИТНЫЕ ВЗАИМОДЕЙСТВИЯ, И ОПРЕДЕЛЯЮЩАЯ СИЛУ И ЭНЕРГИЮ ЭТИХ ВЗВИМОДЕЙСТВИЙ.

Свойства электрических зарядов:

1.В природе существуют два типа электрических зарядов. Положительные (возникают на стекле потертом о кожу) и отрицательные(возникают на эбоните потертом о мех).

2. Одноименные заряды отталкиваются, разноименные притягиваются.

3. Электрический заряд НЕ СУЩЕСТВУЕТ БЕЗ ЧАСТИЦ НОСИТЕЛЕЙ ЗАРЯДА (электрон, протон, позитрон и др.).Например с электрона и др. элементарных заряженных частиц нельзя снять э/заряд.

4.Электрический заряд дискретен, т.е. заряд любого тела составляет целое кратное от элементарного электрического заряда е (е = 1,6 10 -19 Кл). Электрон (т е = 9,11 10 -31 кг) и протон (т р = 1,67 10 -27 кг ) являются соответственно носителями элементарных отрицательного и положительного зарядов.(Известны частицы с дробным электрическим зарядом: – 1/3 е и 2/3 е – это кварки и антикварки , но в свободном состоянии они не обнаружены).

5. Электрический заряд - величина релятивистски инвариантная , т.е. не зависит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.

6. Из обобщения опытных данных установлен фундаментальный закон природы - закон сохранения заряда: алгебраическая сум-

ма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.

Закон экспериментально подтвержден в 1843 г. английским физиком

М. Фарадеем ( 1791- 1867) и др., подтвержден рождением и аннигиляцией частиц и античастиц.

Единица электрического заряда (производная единица, так как определяется через единицу силы тока) - кулон (Кл): 1 Кл - электрический заряд,

проходящий через поперечное сечение проводника при силе тока 1 А за время 1с.

Все тела в природе способны электризоваться, т.е. приобретать электрический заряд. Электризация тел может осуществляться различными способами: соприкосновением (трением), электростатической индукцией

и др. Всякий процесс заряжения сводится к разделению зарядов, при котором на одном из тел (или части тела) появляется избыток положительного заряда, а на другом (или другой части тела) - избыток отрицательного заряда. Общее количество зарядов обоих знаков, содержащихся в телах, не изменяется: эти заряды только перераспределяются между телами.

Электризация тел возможна потому, что тела состоят из заряженных частиц. В процессе электризации тел могут перемещаться, находящиеся в свободном состоянии, электроны и ионы. Протоны остаются в ядрах.

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники .

Проводники - тела, в которых электрический заряд может перемешаться по всему его объему. Проводники делятся на две группы:

1) проводники первого рода (металлы) - перенос в

них зарядов (свободных электронов) не сопровождается химическими

превращениями;

2) проводники второго рода (например, расплавленные соли, ра-

створы кислот) - перенос в них зарядов (положительных и отрицательных

ионов) ведет к химическим изменениям.

Диэлектрики (например, стекло, пластмассы) - тела, в которых практически отсутствуют свободные заряды.

Полупроводники (например, германий, кремний) занимают

промежуточное положение между проводниками и диэлектриками. Указанное деление тел является весьма условным, однако большое различие в них концентраций свободных зарядов обусловливает огромные качественные различия в их поведении и поэтому оправдывает деление тел на проводники, диэлектрики и полупроводники.

ЭЛЕКТРОСТАТИКА - наука о неподвижных зарядах

Закон Кулона.

Закон взаимодействия неподвижных точечных электрических зарядов

Экспериментально установлен в 1785 г. Ш. Кулоном с помощью крутильных весов.

подобных тем, которые использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет).

Точечным зарядом, называется заряженное тело или частица, размерами которых можно пренебречь, по сравнению с расстоянием до них.

Закон Кулона: сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам q 1 и q 2 , и обратно пропорциональна квадрату расстояния r между ними :


k - коэффициент пропорциональности, зависящий от выбора системы

В СИ

Величина ε 0 называется электрической постоянной; она относится к

числу фундаментальных физических постоянных и равна:

ε 0 = 8,85 ∙10 -12 Кл 2 /Н∙м 2

векторной форме закон Кулона в вакууме имеет вид:

где - радиус вектор, соединяющий второй заряд с первым, F 12 – сила, действующая со стороны второго заряда на первый.

Точность выполнения закона Кулона на больших расстояниях, вплоть до

10 7 м, установлена при исследовании магнитного поля с помощью спутников

в околоземном пространстве. Точность же его выполнения на малых расстояниях, вплоть до 10 -17 м, проверена экспериментами по взаимодействию элементарных частиц.

Закон Кулона в среде

Во всех средах сила кулоновского взаимодействия меньше по сравнению с силой взаимодействием в вакууме или воздухе. Физическая величина, показывающая во сколько раз сила электростатического взаимодействия в вакууме больше, чем в данной среде, называется диэлектрической проницаемостью среды и обозначается буквой ε.

ε = F в вакууме / F в среде

Закон кулона в общем виде в СИ:

Свойства Кулоновских сил.

1.Кулоновские силы - это силы центрального типа, т.к. направлены вдоль прямой, соединяющей заряды

Кулоновская сила является силой притяжения, если знаки зарядов разные и силой отталкивания, если знаки зарядов одинаковые

3. Длякулоновских сил справедлив 3 закон Ньютона

4.Кулоновские силы подчиняются принципу независимости или суперпозиции, т.к. сила взаимодействия между двумя точечными зарядами не изменятся при появлении вблизи других зарядов. Результирующая сила электростатического взаимодействия, действующая на данный заряд, равна векторной сумме сил взаимодействия данного заряда с каждым зарядом системы отдельно.

F= F 12 +F 13 +F 14 + ∙∙∙ +F 1 N

Взаимодействия между зарядами осуществляются посредством электрического поля. Электрическое поле – это особая форма существования материи, посредством которой осуществляется взаимодействие электрических зарядов. Электрическое поле проявляет себя тем, что на любой другой заряд внесенный в это поле оно действует с силой. Электростатическое поле создается неподвижными электрическими зарядами и распространяется в пространстве с конечной скоростью с.

Силовая характеристика электрического поля называется напряженностью.

Напряженностью электрического в некоторой точке называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку, к модулю этого заряда.

Напряженность поля точечного заряда q:


Принцип суперпозиции: напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в этой точке каждым зарядом в отдельности (в отсутствие других зарядов).

20 страниц (Word-файл)

Посмотреть все страницы

Урок №1

Закон Кулона. Принцип суперпозиции. Теорема Гаусса.

Одно из фундаментальных взаимодействий – взаимодействие между электрическими зарядами.

Свойства электрического заряда:

1. Существует в двух видах: положительный и отрицательный.

2. В электрически изолированной системе суммарный заряд сохраняется.

3. Величина заряда инвариантна по отношению к инерциальным системам отсчета.

4. Величина заряда диэлектрика: q = N . e , N – целое число, e = - 1.6 . 10 -19 Кл.

Закон Кулона.

Два точечных покоящихся заряда в вакууме взаимодействуют с силой , где r – расстояние между зарядами.

Сила направлена по прямой, соединяющей заряды, и является силой отталкивания, если заряды одноименные, и силой притяжения, если заряды разного знака.

– в системе СИ

– электрическая постоянная

Законом Кулона можно воспользоваться и в том случае, если один из зарядов или оба заряда не являются точечными, но их распределение обладает сферической симметрией. В этом случае r – расстояние между центрами зарядов.

Взаимодействие между зарядами осуществляется через поле, которое создается зарядом в окружающем пространстве.

– напряженность поля, создаваемого зарядом q 1 в точке, определяемой радиус-вектором

Отвлекаясь от индексов 1 и 2, .

Таким образом, напряженность поля в некоторой точке – это сила, действующая на единичный положительный заряд, помещенный в данную точку поля.

Принцип суперпозиции: напряженность электрического поля в данной точке определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами в этой точке.

Если заряды распределены непрерывно, то

, где dq = t . dl , t – линейная плотность заряда, или

dq = s . dl , s – поверхностная плотность заряда, или

dq = r . dV , r – объемная плотность заряда.

Силу, действующую на произвольный заряд q, помещенный в точку поля, где напряженность Е , можно найти по формуле:

Силовыми линиями электрического поля называются воображаемые кривые, в каждой точке которых вектор Е направлен к ним по касательной. Величину поля Е договоримся определять густотой силовых линий, т.е. количеством силовых линий, пересекающих единичную площадку к ним перпендикулярную.

Потоком вектора Е через площадку dS называется:

Вектором площадки называется

где n – единичный вектор нормали к данной площадке. Если площадка замкнутая, то в качестве положительной нормали всегда выбирается внешняя.

Поток вектора Е через произвольную площадку S определяется:

Оказывается, что поток вектора Е через замкнутую поверхность равен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на e 0 :

Данное утверждение называют теоремой Гаусса.

Теорема Гаусса в дифференциальном виде:

r – объемная плотность электрического заряда в той точке, где ищется .

Примеры решения задач

Задача №1

Тонкое полукольцо радиусом 10 см равномерно заряжено с линейной плотностью заряда 1 мкКл/м. В центре кривизны полукольца находится точечный заряд 20 нКл. Найти силу взаимодействия точечного заряда и полукольца.

Решение

Поскольку заряженное полукольцо не является точечным зарядом, то его следует мысленно разбить на элементарные заряды dq = t . dl , где элемент дуги .

Сила взаимодействия dF между точечным зарядом q и элементарным зарядом кольца dq найдется по закону Кулона:

Результирующая сила F найдется векторной суммой всех d F , действующих на заряд q:

Из симметрии задачи можно понять, что результирующая сила F направлена вертикально вниз. Выберем в этом направлении ось y , тогда для величины силы F :

Задача №2

По тонкому кольцу радиуса 10 см равномерно распределен заряд 2 мкКл. Найти максимальную силу, действующую на точечный заряд 1 мкКл, находящийся на оси кольца.

Решение

Рассчитаем силу, действующую на заряд q 2 , по формуле

Где E – напряженность поля, создаваемого кольцом.

Вычислим по принципу суперпозиции. Мысленно разобьем кольцо на элементарные заряды dq , которые создают на оси кольца поле

Из симметрии задачи следует, что результирующий вектор E будет направлен по оси х, поэтому

Пусть имеются два заряженных макроскопических тела, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. В этом случае каждое тело можно считать материальной точкой или «точечным зарядом».

Французский физик Ш. Кулон (1736–1806) экспериментально установил закон, носящий его имя (закон Кулона ) (рис. 1.5):

Рис. 1.5. Ш. Куло́н (1736–1806) - французский инженер и физик

В вакууме сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей эти заряды:

На рис. 1.6 показаны электрические силы отталкивания, возникающие между двумя одноименными точечными зарядами.

Рис. 1.6. Электрические силы отталкивания между двумя одноименными точечными зарядами

Напомним, что , где и - радиус-векторы первого и второго зарядов, поэтому силу, действующую на второй заряд в результате его электростатического - «кулоновского» взаимодействия с первым зарядом можно переписать в следующем «развернутом» виде

Отметим следующее, удобное при решении задач, правило: если первым индексом у силы ставить номер того заряда, на который действует эта сила, а вторым – номер того заряда, который создает эту силу, то соблюдение того же порядка индексов в правой части формулы автоматически обеспечивает правильное направление силы - соответствующее знаку произведения зарядов: - отталкивание и - притяжение, при этом коэффициент всегда.

Для измерения сил, действующих между точечными зарядами, был использован созданный Кулоном прибор, называемый крутильными весами (рис. 1.7, 1.8).

Рис. 1.7. Крутильные весы Ш. Кулона (рисунок из работы 1785 г.). Измерялась сила, действующая между заряженными шарами a и b

Рис. 1.8. Крутильные весы Ш. Кулона (точка подвеса)

На тонкой упругой нити подвешено легкое коромысло, на одном конце которого укреплен металлический шарик, а на другом - противовес. Рядом с первым шариком можно расположить другой такой же неподвижный шарик. Стеклянный цилиндр защищает чувствительные части прибора от движения воздуха.

Чтобы установить зависимость силы электростатического взаимодействия от расстояния между зарядами, шарикам сообщают произвольные заряды, прикасаясь к ним третьим заряженным шариком, укрепленным на ручке из диэлектрика. По углу закручивания упругой нити можно измерить силу отталкивания одноименно заряженных шариков, а по шкале прибора - расстояние между ними.

Надо сказать, что Кулон не был первым ученым, установившим закон взаимодействия зарядов, носящий теперь его имя: за 30 лет до него к такому же выводу пришел Б. Франклин. Более того, точность измерений Кулона уступала точности ранее проведенных экспериментов (Г. Кавендиш).

Чтобы ввести количественную меру для определения точности измерений, предположим, что на самом деле сила взаимодействия зарядов обратна не квадрату расстояния между ними, а какой-то другой степени:

Никто из ученых не возьмется утверждать, что d = 0 точно. Правильное заключение должно звучать так: эксперименты показали, что d не превышает...

Результаты некоторых из этих экспериментов приведены в таблице 1.

Таблица 1.

Результаты прямых экспериментов по проверке закона Кулона

Сам Шарль Кулон проверил закон обратных квадратов с точностью до нескольких процентов. В таблице приведены результаты прямых лабораторных экспериментов. Косвенные данные, основанные на наблюдениях магнитных полей в космическом пространстве, приводят к еще более сильным ограничениям на величину d . Таким образом, закон Кулона можно считать надежно установленным фактом.

В СИ единица силы тока (ампер ) является основной, следовательно, единица заряда q оказывается производной. Как мы увидим в дальнейшем, сила тока I определяется как отношение заряда , протекающего через поперечное сечение проводника за время , к этому времени:

Отсюда видно, что сила постоянного тока численно равна заряду, протекающему через поперечное сечение проводника за единицу времени, соответственно этому:

Коэффициент пропорциональности в законе Кулона записывается в виде:

При такой форме записи из эксперимента следует значение величины , которую принято называть электрической постоянной . Приближенное численное значение электрической постоянной следующее:

Поскольку чаще всего входит в уравнения в виде комбинации

приведём численное значение самого коэффициента

Как и в случае элементарного заряда, численное значение электрической постоянной определено экспериментально с высокой точностью:

Кулон - слишком большая единица для использования на практике. Например, два заряда в 1 Кл каждый, расположенные в вакууме на расстоянии 100 м друг от друга, отталкиваются с силой

Для сравнения: с такой силой давит на землю тело массой

Это примерно масса грузового железнодорожного вагона, например, с углем.

Принцип суперпозиции полей

Принцип суперпозиции представляет собой утверждение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга (Физический энциклопедический словарь, Москва, «Советская энциклопедия», 1983, стр. 731). Экспериментально установлено, что принцип суперпозиции справедлив для рассматриваемого здесь электромагнитного взаимодействия.

В случае взаимодействия заряженных тел принцип суперпозиции проявляет себя следующим образом: сила, с которой данная система зарядов действует на некоторый точеч­ный заряд, равна векторной сумме сил, с которыми действует на него каждый из зарядов системы.

Поясним это на простом примере. Пусть имеются два заряженных тела, действующие на третье с силами и соответственно. Тогда система из этих двух тел - первого и второго - действует на третье тело с силой

Это правило справедливо для любых заряженных тел, не только для точечных зарядов. Силы взаимодействия двух произвольных систем точечных зарядов вычисляются в Дополнении 1 в конце этой главы.

Отсюда следует, что электрическое поле системы зарядов определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами системы, т. е.

Сложение напряженностей электрических полей по правилу сложения векторов выражает так называемый принцип суперпозиции (независимого наложения) электрических полей. Физический смысл этого свойства заключается в том, что электростатическое поле создается только покоящимися зарядами. Значит, поля различных зарядов «не мешают» друг другу, и поэтому суммарное поле системы зарядов можно подсчитать как вектор­ную сумму полей от каждого из них в отдельности.

Так как элементарный заряд весьма мал, а макроскопические тела содержат очень большое количество элементарных зарядов, то распределение зарядов по таким телам в большинстве случаев можно считать непрерывным. Для того чтобы описать как именно распределен (однородно, неоднородно, где зарядов больше, где их меньше и т. п.) заряд по телу введем плотности заряда следующих трех видов:

· объемная плотность заряда :

где dV - физически бесконечно малый элемент объема;

· поверхностная плотность заряда :

где dS - физически бесконечно малый элемент поверхности;

· линейная плотность заряда :

где - физически бесконечно малый элемент длины линии.

Здесь всюду - заряд рассматриваемого физически бесконечно малого элемента (объема, участка поверхности, отрезка линии). Под физически бесконечно малым участком тела здесь и ниже понимается такой его участок, который, с одной стороны, настолько мал, что в условиях данной задачи, его можно считать материальной точкой, а, с другой стороны, он настолько велик, что дискретностью заряда (см. соотношение) этого участка можно пренебречь.

Общие выражения для сил взаимодействия систем непрерывно распределенных зарядов приведены в Дополнении 2 в конце главы.

Пример 1. Электрический заряд 50 нКл равномерно распределен по тонкому стержню длиной 15 см. На продолжении оси стержня на расстоянии 10 см от ближайшего его конца находится точечный заряд 100 нКл (рис. 1.9). Определить силу взаимодействия заряженного стержня и точечного заряда.

Рис. 1.9. Взаимодействие заряженного стержня с точечным зарядом

Решение. В этой задаче силу F нельзя определить, написав закон Кулона в форме или (1.3). В самом деле, чему равно расстояние между стержнем и зарядом: r , r + a /2, r + a ? Поскольку по условиям задачи мы не имеем права считать, что a << r , применение закона Кулона в его исходной формулировке, справедливой только для точечных зарядов невозможно, необходимо использовать стандартный для таких ситуаций приём, который состоит в следующем.

Если известна сила взаимодействия точечных тел (например, закон Кулона) и необходимо найти силу взаимодействия протяженных тел (например, вычислить силу взаимодействия двух заряженных тел конечных размеров), то необходимо разбить эти тела на физически бесконечно малые участки, написать для каждой пары таких «точечных» участков известное для них соотношение и, воспользовавшись принципом суперпозиции, просуммировать (проинтегрировать) по всем парам этих участком.

Всегда полезно, если не сказать - необходимо, прежде чем приступать к конкретизации и выполнению расчета, проанализировать симметрию задачи. С практической точки зрения такой анализ полезен тем, что, как правило, при достаточно высокой симметрии задачи, резко сокращает число величин, которые надо вычислять, поскольку выясняется, что многие из них равны нулю.

Разобьём стержень на бесконечно малые отрезки длиной , расстояние от левого конца такого отрезка до точечного заряда равно .

Равномерность распределения заряда по стержню означает, что линейная плотность заряда постоянна и равна

Следовательно, заряд отрезка равен , откуда, в соответствии с законом Кулона, сила, действующая на точечный заряд q в результате его взаимодействия с точечным зарядом , равна

В результате взаимодействия точечного заряда q со всем стержнем , на него будет действовать сила

Подставляя сюда численные значения, для модуля силы получаем:

Из (1.5) видно, что при , когда стержень можно считать материальной точкой, выражение для силы взаимодействия заряда и стержня, как и должно быть, принимает обычную форму закона Кулона для силы взаимодействия двух точечных зарядов:

Пример 2. Кольцо радиусом несет равномерно распределенный заряд . Какова сила взаимодействия кольца с точечным зарядом q , расположенным на оси кольца на расстоянии от его центра (рис. 1.10).

Решение. По условию, заряд равномерно распределен на кольце радиусом . Разделив на длину окружности, получим линейную плотность заряда на кольце Выделим на кольце элемент длиной . Его заряд равен .

Рис. 1.10. Взаимодействия кольца с точечным зарядом

В точке q этот элемент создает электрическое поле

Нас интересует лишь продольная компонента поля, ибо при суммирова­нии вклада от всех элементов кольца только она отлична от нуля:

Интегрируя по находим электрическое поле на оси кольца на расстоянии от его центра:

Отсюда находим искомую силу взаимодействия кольца с зарядом q :

Обсудим полученный результат. При больших расстояниях до кольца величиной радиуса кольца под знаком радикала можно пренебречь, и мы получаем приближенное выражение

Это не удивительно, так как на больших расстояниях кольцо выглядит точечным зарядом и сила взаимодействия дается обычным законом Кулона. На малых расстояниях ситуация резко меняется. Так, при помещении пробного заряда q в центр кольца сила взаимодействия равна нулю. Это тоже не удивительно: в этом случае заряд q притягивается с равной силой всеми элементами кольца, и действие всех этих сил взаимно компенсируется.

Поскольку при и при электрическое поле равно нулю, где-то при промежуточном значении электрическое поле кольца максимально. Найдем эту точку, дифференцируя выражение для напряженности Е по расстоянию

Приравнивая производную нулю, находим точку где поле максимально. Оно равно в этой точке

Пример 3. Две взаимно перпендикулярные бесконечно длинные нити, несущие равномерно распределенные заряды с линейными плотностями и находятся на расстоянии а друг от друга (рис. 1.11). Как зависит сила взаимодействия между нитями от расстояния а ?

Решение. Сначала обсудим решение этой задачи методом анализа размерностей. Сила взаимодействия между нитями может зависеть от плотностей заряда на них, расстояния между нитями и электрической постоянной, то есть искомая формула имеет вид:

где - безразмерная постоянная (число). Заметим, что вследствие сим­метричного расположения нитей плотности заряда на них могут входить только симметричным же образом, в одинаковых степенях. Размерности входящих сюда величин в СИ известны:

Рис. 1.11. Взаимодействие двух взаимно перпендикулярных бесконечно длинных нитей

По сравнению с механикой здесь появилась новая величина - размерность электрического заряда. Объединяя две предыдущие формулы, получаем уравнение для размерностей:

Изучение электрических явлений обычно начинают с рассмотрения электростатического поля.

Итак, электростатическое поле - это неизменное во времени поле, которое создается покоящимися электрическими зарядами.
В этом простом определении важно обратить внимание вот на что. Известно, что заряд создает электромагнитное поле, но покоящийся заряд создает только электрическое. Это объясняется тем, что когда заряд покоится, то не возникает сила Лоренца, которая зависит от скорости заряженной частицы, поэтому и не возникает магнитная составляющая электромагнитного поля.

Известно, что в электростатическом поле справедлив закон Кулона, который подозрительно похож на закон Всемирного тяготения Ньютона. Это совпадение совсем не случайно. Об этом я расскажу совсем скоро.

Закон Кулона: два неподвижных электрических заряда отталкивают или притягивают друг друга с силой, пропорциональной произведению величин зарядов и обратно пропорциональной квадрату расстояния между ними.

Закон в векторной форме. k - коэффициент пропорциональности.

Закон Кулона позволяет находить силу с которой одна частица действует на другую. Конечно, можно говорить, что он определяет силу взаимодействия двух частиц, но почему-то такое опредленение вызывает путаницу при решении задач.

В законе Кулона важное физическое значение имеют утверждения об обратной зависимости силы от квадрата расстояния и об аддитивности действия электрических зарядов.

Для простоты закон Кулона используют для точечных зарядов , то есть зарядов, размерами которых можно пренебречь в условиях данной задачи. Понятие точечного заряда аналогично понятию материальной точки, для которой также пренебрегали размерами.

Сила в законе Кулона является ньютоновской, поэтому для нее справедлив 3 закон Ньютона: F =-F

Равновесие зарядов
Нужно добавить, что заряды, создающие электростатическое поле, покоятся под действием неэлектрических сил, например, силы тяжести. Существует теорема Ирншоу, которая утверждает невозможность удержания зарядов в равновесии с помощью только электрических сил, то есть если на заряды действуют только электрические силы, то их равновесная конфигурация будет неустойчива.

Доказательство аддитивности действия электрических зарядов

Рассмотрим систему состоящую из трех зарядов q1, q2, q3.
q
1 и q2 поместим усл овно на расстоянии 10 см друг от друга, а заряд q3 на очень большом расстоянии, из закона Кулона понятн о, что он практически не будет действовать на заряды q1 и q2. Затем измерим силу, с которой заряд q2 действует на заряд q1.

Теперь поменяем заряды q2 и q3 местами и измерим силу, с которой заряд q3 действует на q1.

И затем поместим заряды q2 и q3 максимально близко друг к другу на расстоянии 10 см от q1. Будем считать q2 и q3 за один заряд. Измерим с какой силой он деййствует на q1.

Окажется, что сила, действующая на q1, равна сумме первоначально измеренных сил. Этот вывод доказывает утверждение об аддити вности действия электрических зарядов. Также из вывода следует, что сила взаимодействия двух зарядов не изменяется при наличии третьего заряда (и любого количества зарядов).

Принцип суперпозиции

Независимо от числа зарядов, входящих в систему, закон Кулона можно использовать для вычисления взаимодействия каждой пары. Отсюда следует принцип суперпозиции.

Принцип супер позиции: сила, действующая на заряд, расположенный в любой точке объединенной системы зарядов, представляет собой векторную сумму сил, которые создаются каждыми зарядами системы в отдельности и действуют на заряд в этой точке.

Принцип суперпозиции не справедлив при очень малых расстояниях или при действии очень больших сил.

Вам также будет интересно:

Как определить пол ребенка?
Будущие мамочки до того, как УЗИ будет иметь возможность рассказать, кто там расположился в...
Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....
Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос
22.11.2019 Желанными друзьями девушек являются бриллианты. Однако, без роскошных, богатых...