Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Проявление туберкулеза при беременности и способы лечения

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань

SA. Внутренняя энергия. Способы изменения внутренней энергии тела

Внутренняя энергия тела не может являться постоянной величиной. Она может изменяться у любого тела. Если повысить температуру тела, то его внутренняя энергия увеличится, т.к. увеличится средняя скорость движения молекул. Таким образом, увеличивается кинетическая энергия молекул тела. И, наоборот, при понижении температуры, внутренняя энергия тела уменьшается.

Можно сделать вывод: внутренняя энергия тела изменяется, если меняется скорость движения молекул. Попытаемся определить, каким методом можно увеличить или уменьшить скорость передвижения молекул. Рассмотрим следующий опыт. Закрепим на подставке латунную трубку с тонкими стенками. Наполним трубку эфиром и закроем его пробкой. Затем обвяжем его веревкой и начнем интенсивно двигать веревкой в разные стороны. Спустя определенное время, эфир закипит, и сила пара вытолкнет пробку. Опыт демонстрирует, что внутренняя энергия вещества (эфира) возросла: ведь он изменил свою температуру, при этом закипев.

Увеличение внутренней энергии произошло за счет совершения работы при натирании трубкой веревкой.

Как мы знаем, нагревание тел может происходить и при ударах, сгибании или разгибании, говоря проще, при деформации. Во всех приведенных примерах, внутренняя энергия тела возрастает.

Таким образом, внутреннюю энергию тела можно увеличить, совершая над телом работу.

Если же работу выполняет само тело, его внутренняя энергия уменьшается.

Рассмотрим еще один опыт.

В стеклянный сосуд, у которого толстые стенки и он закрыт пробкой, накачаем воздух через специально проделанное отверстие в ней.

Спустя некоторое время пробка вылетит из сосуда. В тот момент, когда пробка вылетает из сосуда, мы сможем увидеть образование тумана. Следовательно, его образование обозначает, что воздух в сосуде стал холодным. Сжатый воздух, который находится в сосуде, при выталкивании пробки наружу совершает определенную работу. Данную работу он выполняет за счет своей внутренней энергии, которая при этом сокращается. Делать выводы об уменьшении внутренней энергии можно исходя из охлаждения воздуха в сосуде. Таким образом, внутреннюю энергию тела можно изменять путем совершения определенной работы.

Однако, внутреннюю энергию возможно изменить и иным способом, без совершения работы. Рассмотрим пример, вода в чайнике, который стоит на плите закипает. Воздух, а также другие предметы в помещении нагреваются от радиатора центрального направления. В подобных случаях, внутренняя энергия увеличивается, т.к. увеличивается температура тел. Но работа при этом не совершается. Значит, делаем вывод, изменение внутренней энергии может произойти не из-за совершения определенной работы.

Рассмотрим еще один пример.

В стакан с водой опустим металлическую спицу. Кинетическая энергия молекул горячей воды, больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. Таким образом, энергия молекул воды будет определенным образом уменьшаться, тем временем как энергия частиц металла будет повышаться. Температуры воды понизится, а температуры спицы не спеша, будет увеличиваться. В дальнейшем, разница между температурой спицы и воды исчезнет. За счет этого опыта мы увидели изменение внутренней энергии различных тел. Делаем вывод: внутренняя энергия различных тел изменяется за счет теплопередачи.

Процесс преобразования внутренней энергии без совершения определенной работы над телом или самим телом называется теплопередачей.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Существуют способы изменения внутренней энергии тела: совершение работы и теплопередача.

При совершении работы она меняется в двух случаях: при трении и при неупругой деформации. При совершении работы силой трения внутренняя энергия увеличивается за счёт уменьшения механической энергии, трущиеся тела нагреваются. В случае неупругого сжатия тела его внутренняя энергия увеличивается за счёт уменьшения механической энергии.

Теплопередача – процесс изменения внутренней энергии без совершения работы, при этом внутренняя энергия одного тела увеличивается за счёт уменьшения внутренней энергии другого тела. Переход энергии идет от тел с более высокой температурой к телам с более низкой температурой. Существует ее варианты: теплопроводность, конвекция и излучение.
~~~~~~~~~
Внутренняя энергия не постоянная величина. Она может изменяться. Если повысить температуру тела, то его внутренняя энергия увеличится (увеличится средняя скорость движения молекул). При понижении температуры, внутренняя энергия тела уменьшается.

Рассмотрим опыт.
Закрепим на подставке латунную трубку с тонкими стенками. Наполним трубку эфиром и закроем его пробкой. Обвяжем его веревкой и начнем интенсивно двигать веревкой в стороны. Через время эфир закипит, и сила пара вытолкнет пробку. Внутренняя энергия вещества (эфира) возросла: он изменил свою температуру, закипев. Увеличение внутренней энергии произошло за счет совершения работы.

Нагревание тел может происходить и при ударах, сгибании или разгибании, при деформации. Внутренняя энергия тела возрастает.

Внутреннюю энергию тела можно увеличить, совершая над телом работу. Если же работу выполняет само тело, его внутренняя энергия уменьшается.

Рассмотрим опыт.
В стеклянный сосуд, у которого толстые стенки и он закрыт пробкой, накачаем воздух через специально проделанное отверстие в ней.

Спустя некоторое время пробка вылетит из сосуда. В момент, когда пробка вылетает из сосуда, мы можем видеть образование тумана. Его образование обозначает, что воздух в сосуде стал холодным. Сжатый воздух, который находится в сосуде, при выталкивании пробки наружу совершает определенную работу. Данную работу он выполняет за счет своей внутренней энергии, которая при этом сокращается. Делать выводы об уменьшении внутренней энергии можно исходя из охлаждения воздуха в сосуде. Таким образом, внутреннюю энергию тела можно изменять путем совершения определенной работы.

Однако, внутреннюю энергию возможно изменить и иным способом, без совершения работы.

Рассмотрим пример.
Вода в чайнике, который стоит на плите закипает. Воздух, а также другие предметы в помещении нагреваются от радиатора центрального направления. В подобных случаях, внутренняя энергия увеличивается, т.к. увеличивается температура тел. Но работа при этом не совершается. Значит изменение внутренней энергии может произойти не из-за совершения определенной работы.

Рассмотрим пример.
В стакан с водой опустим металлическую спицу. Кинетическая энергия молекул горячей воды, больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. Таким образом, энергия молекул воды будет определенным образом уменьшаться, тем временем как энергия частиц металла будет повышаться. Температуры воды понизится, а температуры спицы не спеша, будет увеличиваться. В дальнейшем, разница между температурой спицы и воды исчезнет. За счет этого опыта мы увидели изменение внутренней энергии различных тел. Делаем вывод: внутренняя энергия различных тел изменяется за счет теплопередачи.

Процесс преобразования внутренней энергии без совершения определенной работы над телом или самим телом называется теплопередачей.

Согласно MKT все вещества состоят из частиц, которые находятся в непрерывном тепловом движении и взаимодействуют друг с другом. Поэтому, даже если тело неподвижно и имеет нулевую потенциальную энергию, оно обладает энергией (внутренней энергией), представляющей собой суммарную энергию движения и взаимодействия микрочастиц, составляющих тело. В состав внутренней энергии входят:

  1. кинетическая энергия поступательного, вращательного и колебательного движения молекул;
  2. потенциальная энергия взаимодействия атомов и молекул;
  3. внутриатомная и внутриядерная энергии.

В термодинамике рассматриваются процессы при температурах, при которых не возбуждается колебательное движение атомов в молекулах, т.е. при температурах, не превышающих 1000 К. В этих процессах изменяются только первые две составляющие внутренней энергии. Поэтому

под внутренней энергией в термодинамике понимают сумму кинетической энергии всех молекул и атомов тела и потенциальной энергии их взаимодействия.

Внутренняя энергия тела определяет его тепловое состояние и изменяется при переходе из одного состояния в другое. В данном состоянии тело обладает вполне определенной внутренней энергией, не зависящей от того, в результате какого процесса оно перешло в данное состояние. Поэтому внутреннюю энергию очень часто называют функцией состояния тела .

\(~U = \dfrac {i}{2} \cdot \dfrac {m}{M} \cdot R \cdot T,\)

где i - степень свободы. Для одноатомного газа (например, инертные газы) i = 3, для двухатомного - i = 5.

Из этих формул видно, что внутренняя энергия идеального газа зависит только от температуры и числа молекул и не зависит ни от объема, ни от давления. Поэтому изменение внутренней энергии идеального газа определяется только изменением его температуры и не зависит от характера процесса, в котором газ переходит из одного состояния в другое:

\(~\Delta U = U_2 - U_1 = \dfrac {i}{2} \cdot \dfrac{m}{M} \cdot R \cdot \Delta T ,\)

где ΔT = T 2 - T 1 .

  • Молекулы реальных газов взаимодействуют между собой и поэтому обладают потенциальной энергией W p , которая зависит от расстояния между молекулами и, следовательно, от занимаемого газом объема. Таким образом, внутренняя энергия реального газа зависит от его температуры, объема и структуры молекул.

*Вывод формулы

Средняя кинетическая энергия молекулы \(~\left\langle W_k \right\rangle = \dfrac {i}{2} \cdot k \cdot T\).

Число молекул в газе \(~N = \dfrac {m}{M} \cdot N_A\).

Следовательно, внутренняя энергия идеального газа

\(~U = N \cdot \left\langle W_k \right\rangle = \dfrac {m}{M} \cdot N_A \cdot \dfrac {i}{2} \cdot k \cdot T .\)

Учитывая, что k⋅N A = R - универсальная газовая постоянная, имеем

\(~U = \dfrac {i}{2} \cdot \dfrac {m}{M} \cdot R \cdot T\) - внутренняя энергия идеального газа.

Изменение внутренней энергии

Для решения практических вопросов существенную роль играет не сама внутренняя энергия, а ее изменение ΔU = U 2 - U 1 . Изменение же внутренней энергии рассчитывают, исходя из законов сохранения энергии.

Внутренняя энергия тела может изменяться двумя способами:

  1. При совершении механической работы . а) Если внешняя сила вызывает деформацию тела, то при этом изменяются расстояния между частицами, из которых оно состоит, а следовательно, изменяется потенциальная энергия взаимодействия частиц. При неупругих деформациях, кроме того, изменяется температура тела, т.е. изменяется кинетическая энергия теплового движения частиц. Но при деформации тела совершается работа, которая и является мерой изменения внутренней энергии тела. б) Внутренняя энергия тела изменяется также при его неупругом соударении с другим телом. Как мы видели раньше, при неупругом соударении тел их кинетическая энергия уменьшается, она превращается во внутреннюю (например, если ударить несколько раз молотком по проволоке, лежащей на наковальне, - проволока нагреется). Мерой изменения кинетической энергии тела является, согласно теореме о кинетической энергии, работа действующих сил. Эта работа может служить и мерой изменения внутренней энергии. в) Изменение внутренней энергии тела происходит под действием силы трения, поскольку, как известно из опыта, трение всегда сопровождается изменением температуры трущихся тел. Работа силы трения может служить мерой изменения внутренней энергии.
  2. При помощи теплообмена . Например, если тело поместить в пламя горелки, его температура изменится, следовательно, изменится и его внутренняя энергия. Однако никакая работа здесь не совершалась, ибо не происходило видимого перемещения ни самого тела, ни его частей.

Изменение внутренней энергии системы без совершения работы называется теплообменом (теплопередачей).

Существует три вида теплообмена: теплопроводность, конвекция и излучение.

а) Теплопроводностью называется процесс теплообмена между телами (или частями тела) при их непосредственном контакте, обусловленный тепловым хаотическим движением частиц тела. Амплитуда колебаний молекул твердого тела тем больше, чем выше его температура. Теплопроводность газов обусловлена обменом энергией между молекулами газа при их столкновениях. В случае жидкостей работают оба механизма. Теплопроводность вещества максимальна в твердом и минимальна в газообразном состоянии.

б) Конвекция представляет собой теплопередачу нагретыми потоками жидкости или газа от одних участков занимаемого ими объема в другие.

в) Теплообмен при излучении осуществляется на расстоянии посредством электромагнитных волн.

Рассмотрим более подробно способы изменения внутренней энергии.

Механическая работа

При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.

Изобарный процесс

Рассмотрим вначале изобарный процесс. Пусть в цилиндре с подвижным поршнем находится газ при температуре T 1 (рис. 1).

Будем медленно нагревать газ до температуры T 2 . Газ будет изобарически расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl . Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = p⋅S тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле

\(~A = F \cdot \Delta l = p \cdot S \cdot \Delta l = p \cdot \Delta V,\)

где ΔV - изменение объема газа.

  • Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.
  • Газ выполняет работу только в процессе изменения своего объема.

При расширении (ΔV > 0) газа совершается положительная работа (А > 0); при сжатии (ΔV < 0) газа совершается отрицательная работа (А < 0).

  • Если рассматривать работу внешних сил A " (А " = –А ), то при расширении (ΔV > 0) газа А " < 0); при сжатии (ΔV < 0) А " > 0.

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

\(~p \cdot V_1 = \nu \cdot R \cdot T_1, \; \; p \cdot V_2 = \nu \cdot R \cdot T_2,\)

\(~p \cdot (V_2 - V_1) = \nu \cdot R \cdot (T_2 - T_1) .\)

Следовательно, при изобарном процессе

\(~A = \nu \cdot R \cdot \Delta T .\)

Если ν = 1 моль, то при ΔΤ = 1 К получим, что R численно равна A .

Отсюда вытекает физический смысл универсальной газовой постоянной : она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

Не изобарный процесс

На графике p (V ) при изобарном процессе работа равна площади заштрихованного на рисунке 2, а прямоугольника.

Если процесс не изобарный (рис. 2, б), то кривую функции p = f (V ) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет равна

\(~A = \lim_{\Delta V \to 0} \sum^n_{i=1} p_i \cdot \Delta V_i\), или \(~A = \int p(V) \cdot dV,\)

т.е. будет равна площади заштрихованной фигуры .

При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке 2, в.

Определить работу, используя последнюю формулу, можно только в том случае, если известно, как изменяется давление газа при изменении его объема, т.е. известен вид функции p = f (V ).

Таким образом, видно, что даже при одном и том же изменении объема газа работа будет зависеть от способа перехода (т.е. от процесса: изотермический, изобарный …) из начального состояния газа в конечное. Следовательно, можно сделать вывод, что

  • Работа в термодинамике является функцией процесса и не является функцией состояния.

Количество теплоты

Как известно, при различных механических процессах происходит изменение механической энергии W . Мерой изменения механической энергии является работа сил, приложенных к системе:

\(~\Delta W = A.\)

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты - это мера изменения внутренней энергии в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны внутренней энергии. Они не характеризуют само состояние системы (как это делает внутренняя энергия), а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что

  • работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю);
  • количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Нагревание (охлаждение)

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры T 1 до температуры T 2 , рассчитывается по формуле

\(~Q = c \cdot m \cdot (T_2 - T_1) = c \cdot m \cdot \Delta T,\)

где c - удельная теплоемкость вещества (табличная величина);

\(~c = \dfrac{Q}{m \cdot \Delta T}.\)

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Кроме удельной теплоемкости рассматривают и такую величину, как теплоемкость тела.

Теплоемкость тела C численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

\(~C = \dfrac{Q}{\Delta T} = c \cdot m.\)

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Парообразование (конденсация)

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

\(~Q = L \cdot m,\)

где L - удельная теплота парообразования (табличная величина). При конденсации пара выделяется такое же количество теплоты.

Единицей удельной теплоты парообразования в СИ является джоуль на килограмм (Дж/кг).

Плавление (кристаллизация)

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

\(~Q = \lambda \cdot m,\)

где λ - удельная теплота плавления (табличная величина). При кристаллизации тела такое же количество теплоты выделяется.

Единицей удельной теплоты плавления в СИ является джоуль на килограмм (Дж/кг).

Сгорание топлива

Количество теплоты, которое выделяется при полном сгорании топлива массой m ,

\(~Q = q \cdot m,\)

где q - удельная теплота сгорания (табличная величина).

Единицей удельной теплоты сгорания в СИ является джоуль на килограмм (Дж/кг).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 129-133, 152-161.

Мы выяснили, что испарение жидкости возможно только при наличии притока теплоты к испаряющейся жидкости. Почему это так?

Во-первых, при испарении увеличивается внутренняя энергия вещества. Внутренняя энергия насыщенного пара всегда больше внутренней энергии жидкости, из которой этот пар образовался. Увеличение внутренней энергии вещества при испарении без изменения температуры происходит в основном благодаря тому, что при переходе в пар среднее расстояние между молекулами увеличивается. При этом возрастает их взаимная потенциальная энергия, так как, для того чтобы раздвинуть молекулы на большие расстояния, нужно затратить работу на преодоление сил притяжения молекул друг к другу.

Кроме того, совершается работа против внешнего давления, ибо пар занимает больший объем, чем жидкость, из которой он образовался. Совершение работы при парообразовании становится особенно наглядным, если представить себе, что жидкость испаряется в цилиндре и что образующиеся пар поднимает легкий поршень (рис. 492), производя при этом работу против атмосферного давления. Эту работу легко подсчитать. Сделаем этот подсчет для воды, кипящей при нормальном давлении и, следовательно, при температуре . Пусть поршень имеет площадь . Так как нормальное атмосферное давление равно , то на поршень действует сила . Если поршень поднимется на , будет произведена работа . При этом образуется пара. Плотность пара при равна , поэтому масса пара равна . Следовательно, при образовании пара на работу против внешнего давления будет затрачено .

Рис. 492. Образующиеся пары поднимают поршень. При этом производится работа против сил внешнего давления

При испарении воды при расходуется (удельная теплота парообразования). Из них затрачивается, как показывает наш подсчет, на работу против внешнего давления. Следовательно, остаток, равный , представляет собой приращение внутренней энергии пара по сравнению с энергией воды. Как видно, для воды большая часть теплоты при испарении идет на приращение внутренней энергии и лишь небольшая часть тратится на совершение внешней работы.

297.1. Определите приращение внутренней энергии при испарении спирта, если известно, что плотность пара спирта при температуре кипения равна .

Вам также будет интересно:

Как определить пол ребенка?
Будущие мамочки до того, как УЗИ будет иметь возможность рассказать, кто там расположился в...
Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....
Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос
22.11.2019 Желанными друзьями девушек являются бриллианты. Однако, без роскошных, богатых...