Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Проявление туберкулеза при беременности и способы лечения

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань

Что значит ряд сходится абсолютно. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость

Своим внеочередным появлением данный раздел обязан многим и многим авторам, читая труды которых так и хотелось запустить оными трудами в самих писателей. Собственно, я планировал выложить данную тему полностью лишь по мере её окончательной готовности, однако ввиду слишком большого количества вопросов по ней, изложу некоторые моменты сейчас. Впоследствии материал будет дополнен и расширен. Начнём с определений.

Ряд вида $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, где $u_n>0$, называется знакочередующимся.

Знаки членов знакочередующегося ряда строго чередуются:

$$ \sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n=u_1-u_2+u_3-u_4+u_5-u_6+u_7-u_8+\ldots $$

Например, $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ - знакочередующийся ряд. Бывает, что строгое чередование знаков начинается не с первого элемента, однако для исследования на сходимость это несущественно.

Почему чередование знаков не с первого элемента является несущественным? показать\скрыть

Дело в том, что среди свойств числовых рядов есть утверждение, которое позволяет нам отбрасывать "лишние" члены ряда. Вот это свойство:

Ряд $\sum\limits_{n=1}^{\infty}u_n$ сходится тогда и только тогда, когда сходится любой из его остатков $r_n=\sum\limits_{k=n+1}^{\infty}u_k$. Отсюда следует, что отбрасывание или добавление к некоторому ряду конечного количества членов не изменяет сходимости ряда.

Пусть нам задан некий знакочередующийся ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, и пусть для этого ряда выполнено первое условие признака Лейбница, т.е. $\lim_{n\to{\infty}}u_n=0$. Однако второе условие, т.е. $u_n≥u_{n+1}$, выполняется начиная с некоего номера $n_0\in{N}$. Если $n_0=1$, то мы получаем обычную формулировку второго условия признака Лейбница, посему ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$ будет сходиться. Если же $n_0>1$, то разобьём ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$ на две части. В первую часть выделим все те элементы, номера которых меньше $n_0$:

$$ \sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n=\sum\limits_{n=1}^{n_0-1}(-1)^{n+1}u_n+\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n $$

Для ряда $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$ выполнены оба условия признака Лейбница, поэтому ряд $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$ сходится. Так как сходится остаток, то будет сходиться и исходный ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$.

Таким образом, совершенно неважно, выполнено ли второе условие признака Лейбница, начиная с первого, или же с тысячного элемента - ряд всё равно будет сходиться.

Отмечу, что признак Лейбница является достаточным, но не необходимым условием сходимости знакочередующихся рядов. Иными словами, выполнение условий признака Лейбница гарантирует сходимость ряда, но невыполнение оных условий не гарантирует ни сходимости, ни расходимости. Разумеется, невыполнение первого условия, т.е. случай $\lim_{n\to{\infty}}u_n\neq{0}$, означает расходимость ряда $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$, однако невыполнение второго условия может произойти как для сходящегося, так и расходящегося ряда.

Так как знакочередующиеся ряды частенько встречаются в стандартных типовых расчётах, то я составил схему, по которой можно исследовать на сходимость стандартный знакочередующийся ряд.

Разумеется, можно напрямую применять признак Лейбница, минуя проверку сходимости ряда из модулей. Однако для стандартных учебных примеров проверка ряда из модулей необходима, так как большинство авторов типовых расчетов требуют не просто выяснить, сходится ряд или нет, а определить характер сходимости (условная или абсолютная). Перейдем к примерам.

Пример №1

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ на сходимость.

Для начала выясним, действительно ли данный ряд знакочередующийся. Так как $n≥1$, то $4n-1≥3>0$ и $n^2+3n≥4>0$, т.е. при всех $n\in{N}$ имеем $\frac{4n-1}{n^2+3n}>0$. Таким образом, заданный ряд имеет вид $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, где $u_n=\frac{4n-1}{n^2+3n}>0$, т.е. рассматриваемый ряд - знакочередующийся.

Обычно такая проверка делается устно, однако пропускать её крайне нежелательно: ошибки в типовых расчётах нередки. Часто бывает, что знаки членов заданного ряда начинают чередоваться не с первого члена ряда. В этом случае можно отбросить "мешающие" члены ряда и исследовать сходимость остатка (см. примечание в начале этой страницы).

Итак, нам задан знакочередующийся ряд. Будем следовать вышеприведённой . Для начала составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{4n-1}{n^2+3n}\right| =\sum\limits_{n=1}^{\infty}\frac{4n-1}{n^2+3n} $$

Проверим, сходится ли составленный ряд из модулей. Применим признак сравнения . Так как при всех $n\in{N}$ имеем $4n-1=3n+n-1≥3n$ и $n^2+3n≤n^2+3n^2=4n^2$, то:

$$ \frac{4n-1}{n^2+3n}≥ \frac{3n}{4n^2}=\frac{3}{4}\cdot\frac{1}{n} $$

Гармонический ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, поэтому будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\left(\frac{3}{4}\cdot\frac{1}{n}\right)$. Следовательно, согласно признаку сравнения ряд $\sum\limits_{n=1}^{\infty}\frac{4n-1}{n^2+3n}$ расходится. Обозначим $u_n=\frac{4n-1}{n^2+3n}$ и проверим, выполнены ли условия признака Лейбница для исходного знакочередующегося ряда. Найдём $\lim_{n\to{\infty}}u_n$:

$$ \lim_{n\to{\infty}}u_n =\lim_{n\to{\infty}}\frac{4n-1}{n^2+3n} =\lim_{n\to{\infty}}\frac{\frac{4}{n}-\frac{1}{n^2}}{1+\frac{3}{n}} =0. $$

Первое условие признака Лейбница выполнено. Теперь нужно выяснить, выполнено ли неравенство $u_n≥u_{n+1}$. Немалое количество авторов предпочитает записать несколько первых членов ряда, а затем сделать вывод, что неравенство $u_n≥u_{n+1}$ выполнено.

Иными словами, это "доказательство" для данного ряда имело бы такой вид: $\frac{2}{3}≤\frac{5}{8}≤\frac{8}{15}≤\ldots$. После сравнения нескольких первых членов делается вывод: для остальных членов неравенство сохранится, каждый последующий будет не более предыдущего. Откуда взялся этот "метод доказательства" я не знаю, но он ошибочен. Например, для последовательности $v_n=\frac{10^n}{n!}$ получим такие первые члены: $v_1=10$, $v_2=50$, $v_3=\frac{500}{3}$, $v_4=\frac{1250}{3}$. Как видите, они возрастают, т.е., если ограничиться сравнением нескольких первых членов, то можно сделать вывод, что $v_{n+1}>v_n$ для всех $n\in{N}$. Однако такой вывод будет категорически неверным, так как начиная с $n=10$ элементы последовательности будут убывать.

Как же доказать неравенство $u_n≥u_{n+1}$? В общем случае для этого есть несколько способов. Самый простой в нашем случае - рассмотреть разность $u_n-u_{n+1}$ и выяснить её знак. В следующем примере рассмотрим иной способ: посредством доказательства убывания соответствующей функции.

$$ u_n-u_{n+1} =\frac{4n-1}{n^2+3n}-\frac{4(n+1)-1}{(n+1)^2+3(n+1)} =\frac{4n-1}{n^2+3n}-\frac{4n+3}{n^2+5n+4}=\\ =\frac{(4n-1)\cdot\left(n^2+5n+4\right)-\left(n^2+3n\right)\cdot(4n+3)}{\left(n^2+3n\right)\cdot\left(n^2+5n+4\right)} =\frac{4n^2+2n-4}{\left(n^2+3n\right)\cdot\left(n^2+5n+4\right)}. $$

Так как $n≥1$, то $4n^2-4≥0$, откуда имеем $4n^2+2n-4>0$, т.е. $u_n-u_{n+1}>0$, $u_n>u_{n+1}$. Бывает, конечно, что неравенство $u_n≥u_{n+1}$ выполняется не с первого члена ряда, однако это несущественно (см. в начале страницы).

Таким образом, оба условия признака Лейбница выполнены. Так как при этом ряд $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{4n-1}{n^2+3n}\right|$ расходится, то ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ сходится условно.

Ответ : ряд сходится условно.

Пример №2

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}$ на сходимость.

Для начала рассмотрим выражение $\frac{5n-4}{\sqrt{2n^3-1}}$. Стоит произвести небольшую проверку корректности условия. Дело в том, что очень часто в условиях стандартных типовых расчётов можно встретить ошибки, когда подкоренное выражение является отрицательным, или же в знаменателе при некоторых значениях $n$ появляется ноль.

Дабы избежать таких неприятностей, произведём простенькое предварительное исследование. Так как при $n≥1$ имеем $2n^3≥2$, то $2n^3-1≥1$, т.е. выражение под корнем не может быть отрицательным или равняться нулю. Следовательно, условие вполне корректно. Выражение $\frac{5n-4}{\sqrt{2n^3-1}}$ определено при всех $n≥1$.

Добавлю, что при $n≥1$ верно неравенство $\frac{5n-4}{\sqrt{2n^3-1}}>0$, т.е. нам задан знакочередующийся ряд. Будем исследовать его согласно вышеприведённой . Для начала составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}\right| =\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}} $$

Проверим, сходится ли ряд, составленный из модулей членов заданного ряда. Применим признак сравнения . В решении предыдущего примера мы применяли первый признак сравнения. Здесь же, сугубо для разнообразия, применим второй признак сравнения (признак сравнения в предельной форме). Сравним ряд $\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}}$ с расходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$:

$$ \lim_{n\to\infty}\frac{\frac{5n-4}{\sqrt{2n^3-1}}}{\frac{1}{\sqrt{n}}} =\lim_{n\to\infty}\frac{5n\sqrt{n}-4\sqrt{n}}{\sqrt{2n^3-1}} =\lim_{n\to\infty}\frac{\frac{5n\sqrt{n}}{n\sqrt{n}}-\frac{4\sqrt{n}}{n\sqrt{n}}}{\sqrt{\frac{2n^3-1}{n^3}}} \lim_{n\to\infty}\frac{5-\frac{4}{n}}{\sqrt{2-\frac{1}{n^3}}} =\frac{5}{\sqrt{2}}. $$

Так как $\frac{5}{\sqrt{2}}\neq{0}$ и $\frac{5}{\sqrt{2}}\neq\infty$, то одновременно с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}}$.

Итак, абсолютной сходимости заданный знакочередующийся ряд не имеет. Обозначим $u_n=\frac{5n-4}{\sqrt{2n^3-1}}$ и проверим, выполнены ли условия признака Лейбница. Найдём $\lim_{n\to{\infty}}u_n$:

$$ \lim_{n\to{\infty}}u_n =\lim_{n\to{\infty}}\frac{5n-4}{\sqrt{2n^3-1}} =\lim_{n\to{\infty}}\frac{\frac{5n}{n^{\frac{3}{2}}}-\frac{4}{n^{\frac{3}{2}}}}{\sqrt{\frac{2n^3-1}{n^3}}} =\lim_{n\to{\infty}}\frac{\frac{5}{\sqrt{n}}-\frac{4}{n^{\frac{3}{2}}}}{\sqrt{2-\frac{1}{n^3}}} =0. $$

Первое условие признака Лейбница выполнено. Теперь нужно выяснить, выполнено ли неравенство $u_n≥u_{n+1}$. В прошлом примере мы рассмотрели один из способов доказательства этого неравенства: посредством выяснения знака разности $u_n-u_{n+1}$. В этот раз обратимся к иному способу: вместо $u_n=\frac{5n-4}{\sqrt{2n^3-1}}$ рассмотрим функцию $y(x)=\frac{5x-4}{\sqrt{2x^3-1}}$ при условии $x≥1$. Отмечу, что поведение данной функции при условии $x<1$ нам совершенно безразлично.

Наша цель состоит в том, чтобы доказать невозрастание (или убывание) функции $y(x)$. Если мы докажем, что функция $y(x)$ является невозрастающей, то для всех значений $x_2>x_1$ будем иметь $y(x_1)≥y(x_2)$. Полагая $x_1=n$ и $x_2=n+1$ получим, что из неравенства $n+1>n$ последует истинность неравенства $y(n)≥y(n+1)$. Так как $y(n)=u_n$, то неравенство $y(n)≥y(n+1)$ есть то же самое, что и $u_{n}≥u_{n+1}$.

Если же мы покажем, что $y(x)$ - убывающая функция, то из неравенства $n+1>n$ последует истинность неравенства $y(n)>y(n+1)$, т.е. $u_{n}>u_{n+1}$.

Найдём производную $y"(x)$ и выясним её знак для соответствующих значений $x$.

$$ y"(x)=\frac{(5x-4)"\cdot\sqrt{2x^3-1}-(5x-4)\cdot\left(\sqrt{2x^3-1}\right)"}{\left(\sqrt{2x^3-1}\right)^2} =\frac{5\cdot\sqrt{2x^3-1}-(5x-4)\cdot\frac{1}{2\sqrt{2x^3-1}}\cdot{6x^2}}{2x^3-1}=\\ =\frac{5\cdot\left(2x^3-1\right)-(5x-4)\cdot{3x^2}}{\left(2x^3-1\right)^{\frac{3}{2}}} =\frac{-5x^3+12x^2-5}{\left(2x^3-1\right)^{\frac{3}{2}}} $$

Полагаю, очевидно, что при достаточно больших положительных значениях $x≥1$ многочлен в знаменателе будет меньше нуля, т.е. $-5x^3+12x^2-5<0$. Эту "очевидность" несложно обосновать формально - если вспомнить курс алгебры. Дело в том, что согласно лемме о модуле старшего члена, при достаточно больших значениях $|x|$ знак многочлена совпадает с знаком его старшего члена. Адаптируясь к нашей задаче получаем, что существует такое число $c≥1$, то для всех $x≥c$ будет верным неравенство $-5x^3+12x^2-5<0$. В принципе, существования такого числа $c$ уже вполне достаточно для дальнейшего решения задачи.

Однако давайте подойдём к вопросу менее формально. Дабы не привлекать лишних лемм из алгебры, просто грубо оценим значение выражения $-5x^3+12x^2-5$. Учтём $-5x^3+12x^2-5=x^2(-5x+12)-5$. При $x≥3$ имеем $-5x+12<0$, посему $x^2(-5x+12)-5<0$.

Таким образом, при $x≥3$ имеем $y"(x)<0$, т.е. функция $y(x)$ убывает. А это, в свою очередь, означает, что при $n≥3$ верно неравенство $u_n>u_{n+1}$, т.е. второе условие признака Лейбница выполнено. Разумеется, мы показали выполнение второго условия не с $n=1$, а с $n=3$, но это несущественно (см. в начале страницы).

Таким образом, оба условия признака Лейбница выполнены. Так как при этом ряд $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}\right|$ расходится, то ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ сходится условно.

Ответ : ряд сходится условно.

Пример №3

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{3n+4}{2^n}$ на сходимость.

Данный пример не представляет большого интереса, поэтому я распишу его коротко. Нам задан знакочередующийся ряд, который вновь станем исследовать по . Составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{3n+4}{2^n}\right| =\sum\limits_{n=1}^{\infty}\frac{3n+4}{2^n} $$

Применим признак Д"Аламбера . Обозначая $u_n=\frac{3n+4}{2^n}$, получим $u_{n+1}=\frac{3n+7}{2^{n+1}}$.

$$ \lim_{n\to\infty}\frac{u_{n+1}}{u_{n}} =\lim_{n\to\infty}\frac{\frac{3n+7}{2^{n+1}}}{\frac{3n+4}{2^n}} =\frac{1}{2}\lim_{n\to\infty}\frac{3n+7}{3n+4} =\frac{1}{2}\lim_{n\to\infty}\frac{3+\frac{7}{n}}{3+\frac{4}{n}} =\frac{1}{2}\cdot{1}=\frac{1}{2}. $$

Так как $\frac{1}{2}<1$, то согласно признаку Д"Аламбера ряд $\sum\limits_{n=1}^{\infty}\frac{3n+4}{2^n}$ сходится. Из сходимости ряда $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{3n+4}{2^n}\right|$, что ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{3n+4}{2^n}$ сходится, причём сходится абсолютно.

Отмечу, что для решения заданного примера нам не потребовался признак Лейбница. Именно поэтому удобно сперва проверить сходимость ряда из модулей, а потом уже, при необходимости, исследовать сходимость исходного знакочередующегося ряда.

Ответ : ряд сходится абсолютно.

Числовой ряд, члены которого имеют произвольные знаки (+), (?), называется знакопеременным рядом. Рассмотренные выше знакочередующиеся ряды являются частным случаем знакопеременного ряда; понятно, что не всякий знакопеременный ряд является знакочередующимся. Например, ряд? знакопеременный, но не являющийся знакочередующимся рядом.

Отметим, что в знакопеременном ряде членов как со знаком (+), так и со знаком (?) бесконечно много. Если это не выполняется, например, ряд содержит конечное число отрицательных членов, то их можно отбросить и рассматривать ряд, составленный только из положительных членов, и наоборот.

Определение 1. Если числовой ряд сходится и его сумма равна S, а частичная сумма равна S n , то называется остатком ряда, причём, т.е. остаток сходящегося ряда стремится к 0.

Рассмотрим сходящийся знакочередующийся ряд как частный случай знакопеременного ряда

где. Запишем его в виде, тогда по признаку Лейбница; так как, то, т.е. остаток сходящегося ряда стремится к 0.

Для знакопеременных рядов вводятся понятия абсолютной и условной сходимости.

Определение 2. Ряд называется сходящимся абсолютно, если сходится ряд, составленный из абсолютных величин его членов.

Определение 3. Если числовой ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (неабсолютно) сходящимся.

Теорема 2 (достаточный признак сходимости знакопеременных рядов). Знакопеременный ряд сходится, причём абсолютно, если сходится ряд, составленный из абсолютных величин его членов.

Доказательство. Обозначим через частичную сумму ряда: , а через? частичную сумму ряда: . Обозначим через сумму всех положительных членов, а через сумму абсолютных величин всех отрицательных членов, входящих в. Очевидно, что.

По условию теоремы ряд сходится, тогда существует, и так как последовательность? монотонно возрастающая и неотрицательная, то. Очевидно, что, тогда последовательности и являются монотонно возрастающими и ограниченными, причем их пределы равны и. Тогда. Значит, исходный знакопеременный ряд сходится и сходится абсолютно. Теорема доказана.

Замечание. Теорема 2 даёт только достаточное условие сходимости знакопеременных рядов. Обратная теорема неверна, т.е. если знакопеременный ряд сходится, то не обязательно, что сходится ряд, составленный из модулей (он может быть как сходящимся, так и расходящимся). Например, ряд сходится по признаку Лейбница (см. пример 1 данной лекции), а ряд, составленный из абсолютных величин его членов, (гармонический ряд) расходится.

Пример 2. Исследовать на условную и абсолютную сходимость ряд.

Решение. Данный ряд является знакопеременным, общий член которого обозначим: . Составим ряд из абсолютных величин и применим к нему признак Даламбера. Составим предел, где, . Проведя преобразования, получаем. Таким образом, ряд сходится, а значит, исходный знакопеременный ряд сходится абсолютно. Ответ: ряд абсолютно сходится.

Пример 3. Исследовать на абсолютную и условную сходимость ряд.

Решение. А) Исследуем ряд на абсолютную сходимость. Обозначим и составим ряд из абсолютных величин. Получаем ряд с положительными членами, к которому применяем предельный признак сравнения рядов (теорема 2, лекция 2, разд. 2.2). Для сравнения с рядом рассмотрим ряд, который имеет вид. Этот ряд является рядом Дирихле с показателем, т.е. он расходится. Составим и вычислим следующий предел. Так как предел существует, не равен 0 и не равен?, то оба ряда и ведут себя одинаково. Таким образом, ряд расходится, а значит, исходный ряд не является абсолютно сходящимся.

Б) Далее исследуем исходный ряд на условную сходимость. Для этого проверим выполнение условий признака Лейбница (теорема 1, разд. 3.1). Условие 1): , где, т.е. этот ряд знакочередующийся. Для проверки условия 2) о монотонном убывании членов ряда используем следующий метод. Рассмотрим вспомогательную функцию, определенную при (функция такова, что при имеем). Для исследования этой функции на монотонность найдём её производную: . Эта производная при. Следовательно, функция монотонно убывает при указанных значениях х. Полагая, получаем, где. Это означает, чтоусловие 2) выполнено. Для проверки условия 3) находим предел общего члена: , т.е. третье условие выполняется. Таким образом, для исходного ряда выполнены все условия признака Лейбница, т.е. он сходится.

Ответ: ряд условно сходится.

Свойства абсолютно и условно сходящихся рядов

Свойство 1. Если ряд абсолютно сходится, то он абсолютно сходится при любой перестановке его членов, при этом сумма ряда не зависит от порядка расположения членов. Если? сумма всех его положительных членов, а? сумма всех абсолютных величин отрицательных членов, то сумма ряда равна.

Свойство 2. Если ряд абсолютно сходится и, то ряд также абсолютно сходится.

Свойство 3. Если ряды и абсолютно сходятся, то ряды также абсолютно сходятся.

Свойство 4 (теорема Римана). Если ряд условно сходится, то какое бы мы не взяли число А, можно переставить члены данного ряда так, чтобы его сумма оказалась в точности равной А; более того, можно так переставить члены условно сходящегося ряда, чтобы после этого он расходился.

Знакочередующимися рядами называются ряды, члены которых попеременно то положительны, то отрицательны . Чаще всего рассматриваются знакочередующиеся ряды, в которых члены чередуются через один: за каждым положительным следует отрицательный, за каждым отрицательным - положительный. Но встречаются знакочередующиеся ряды, в которых члены чередуются через два, три и так далее.

Рассмотрим пример знакочередующегося ряда, начало которого выглядит так:

3 − 4 + 5 − 6 + 7 − 8 + ...

и сразу же общие правила записи знакочередующихся рядов.

Как и в случае любых рядов, для продолжения данного ряда нужно задать функцию, определяющую общий член ряда. В нашем случае это n + 2 .

А как задать чередование знаков членов ряда? Умножением функции на минус единицу в некоторой степени. В какой степени? Сразу же подчеркнём, что не любая степень обеспечивает чередование знаков при членах ряда.

Допустим, мы хотим, чтобы первый член знакочередующегося ряда был с положительным знаком, как это и имеет место в приведённом выше примере. Тогда минус единица должна быть в степени n − 1 . Начните подставлять в это выражение числа начиная с единицы и вы получите в качестве показателя степени при минус единице то чётное, то нечётное число. Это и есть необходимое условие чередования знаков! Такой же результат получим при n + 1 . Если же мы хотим, чтобы первый член знакочередующегося ряда был с отрицательным знаком, то можем задать этот ряд умножением функции общего члена на единицу в степени n . Получим то чётное, то нечётное число и так далее. Как видим, уже описанное условие чередования знаков выполнено.

Таким образом, можем записать приведённый выше знакочередующийся ряд в общем виде:

Для чередования знаков члена ряда степень минус единицы может быть суммой n и любого положительного или отрицательного, чётного или нечётного числа. То же самое относится к 3n , 5n , ... То есть, чередование знаков членов знакочередующегося ряда обеспечивает степень при минус единицы в виде суммы n , умноженного на любое нечётное число и любого числа.

Какие степени при минус единице не обеспечивают чередование знаков членов ряда? Те, которые присутствуют в виде n , умноженного на любое чётное число, к которому прибавлено любое число, включая нуль, чётное или нечётное. Примеры показателей таких степеней: 2n , 2n + 1 , 2n − 1 , 2n + 3 , 4n + 3 ... В случае таких степеней в зависимости от того, с каким числом складывается "эн", умноженное на чётное число, получаются или только чётные, или только нечётные числа, что, как мы уже выяснили, не даёт чередования знаков членов ряда.

Знакочередующиеся ряды - частный случай знакопеременных рядов . Знакопеременные ряды - это ряды с членами произвольных знаков , то есть такими, которые могут быть положительными и отрицательными в любой последовательности. Пример знакопеременного ряда:

3 + 4 + 5 + 6 − 7 + 8 − ...

Далее рассмотрим признаки сходимости знакочередующихся и знакопеременных рядов. Условную сходимость знакочередующихся рядов можно установить при помощи признака Лейбница. А для более широкого круга рядов - знакопеременных (в том числе и знакочередующихся) - действует признак абсолютной сходимости.

Сходимость знакочередующихся рядов. Признак Лейбница

Для знакочередующихся рядов имеет место следующий признак сходимости – признак Лейбница.

Теорема (признак Лейбница). Ряд сходится, а его сумма не превосходит первого члена, если одновременно выполняются следующие два условия:

  • абсолютные величины членов знакочередующегося ряда убывают: u 1 > u 2 > u 3 > ... > u n > ... ;
  • предел его общего члена при неограниченном возрастании n равен нулю.

Следствие. Если за сумму знакочередующегося ряда принять сумму его n членов, то допущенная при этом погрешность не превзойдёт абсолютной величины первого отброшенного члена.

Пример 1. Исследовать сходимость ряда

Решение. Это знакочередующийся ряд. Абсолютные величины его членов убывают:

а предел общего члена

равен нулю:

Оба условия признака Лейбница выполнены, поэтому ряд сходится.

Пример 2. Исследовать сходимость ряда

Решение. Это знакочередующийся ряд. Сначала докажем, что :

, .

Если N = 1 , то для всех n > N выполняется неравенство 12n − 7 > n . В свою очередь для каждого n . Поэтому , то есть члены ряда по абсолютному значению убывают. Найдём предел общего члена ряда (применяя правило Лопиталя ):

Предел общего члена равен нулю. Оба условия признака Лейбница выполнены, поэтому ответ на вопрос о сходимости - положительный.

Пример 3. Исследовать сходимость ряда

Решение. Дан знакочередующийся ряд. Выясним, выполняется ли первое условие признака Лейбница, то есть требование . Чтобы требование выполнялось, необходимо, чтобы

Мы убедились, что требование выполняется для всех n > 0 . Первый признак Лейбница выполняется. Найдём предел общего члена ряда:

.

Предел не равен нулю. Таким образом, второе условие признака Лейбница не выполняется, поэтому о сходимости не может быть и речи.

Пример 4. Исследовать сходимость ряда

Решение. В данном ряде за двумя отрицательными членами следуют два положительных. Данный ряд - также знакочередующийся. Выясним, выполняется ли первое условие признака Лейбница.

Требование выполняется для всех n > 1 . Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена (применяя правило Лопиталя):

.

Получили нуль. Таким образом, оба условия признака Лейбница выполняются. Сходимость имеет место быть.

Пример 5. Исследовать сходимость ряда

Решение. Это знакочередующийся ряд. Выясним, выполняется ли первое условие признака Лейбница. Так как

,

Так как n 0 , то 3n + 2 > 0 . В свою очередь, для каждого n , поэтому . Следовательно, члены ряда по абсолютному значению убывают. Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена ряда (применяя правило Лопиталя):

.

Получили нулевое значение. Оба условия признака Лейбница выполняются, поэтому данный ряд сходится.

Пример 6. Исследовать сходимость ряда

Решение. Выясним, выполняется ли первое условие признака Лейбница для этого знакочередующегося ряда:

Члены ряда по абсолютному значению убывают. Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена:

.

Предел общего члена не равен нулю. Второе условие признака Лейбница не выполняется. Следовательно, данный ряд расходится.

Признак Лейбница является признаком условной сходимости ряда . Значит, выводы о сходимости и расходимости рассмотренных выше знакочередующихся рядов можно дополнить: эти ряды сходятся (или расходятся) условно.

Абсолютная сходимость знакопеременных рядов

Пусть ряд

– знакопеременный. Рассмотрим ряд, составленный из абсолютных величины его членов:

Определение. Ряд называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов . Если же знакопеременный ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится, то такой знакопеременный ряд называется условно или неабсолютно сходящимся .

Теорема. Если ряд абсолютно сходится, то он сходится и условно.

Пример 7. Установить, сходится ли ряд

Решение. Соответствующим данному ряду рядом с положительными членами является ряд Это обобщённый гармонический ряд , в котором , поэтому ряд расходится. Проверим соблюдение условий признака Лейбница.

Напишем абсолютные значения первых пяти членов ряда:

.

Как видим, члены ряда по абсолютному значению убывают. Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена:

Получили нулевое значение. Оба условия признака Лейбница выполняются. То есть по признаку Лейбница сходимость имеет место быть. А соответствующий ряд с положительными членами расходится. Следовательно, данный ряд сходится условно.

Пример 8. Установить, сходится ли ряд

абсолютно, условно, или расходится.

Решение. Соответствующим данному ряду рядом с положительными членами является ряд Это обобщённый гармонический ряд, в котором , поэтому ряд расходится. Проверим соблюдение условий признака Лейбница.

Определение 1

Числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $, члены которого имеют произвольные знаки (+), (?), называется знакопеременным рядом.

Рассмотренные выше знакочередующиеся ряды являются частным случаем знакопеременного ряда; понятно, что не всякий знакопеременный ряд является знакочередующимся. Например, ряд $1-\frac{1}{2} -\frac{1}{3} +\frac{1}{4} +\frac{1}{5} -\frac{1}{6} -\frac{1}{7} +\ldots - $ знакопеременный, но не являющийся знакочередующимся рядом.

Отметим, что в знакопеременном ряде членов как со знаком (+), так и со знаком (-) бесконечно много. Если это не выполняется, например, ряд содержит конечное число отрицательных членов, то их можно отбросить и рассматривать ряд, составленный только из положительных членов, и наоборот.

Определение 2

Если числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится и его сумма равна S,а частичная сумма равна $S_n$ , то $r_{n} =S-S_{n} $ называется остатком ряда, причём $\mathop{\lim }\limits_{n\to \infty } r_{n} =\mathop{\lim }\limits_{n\to \infty } (S-S_{n})=S-S=0$, т.е. остаток сходящегося ряда стремится к 0.

Определение 3

Ряд $\sum \limits _{n=1}^{\infty }u_{n} $ называется сходящимся абсолютно, если сходится ряд, составленный из абсолютных величин его членов $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $.

Определение 4

Если числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, а ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $, составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (неабсолютно) сходящимся.

Теорема 1 (достаточный признак сходимости знакопеременных рядов)

Знакопеременный ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, причём абсолютно, если сходится ряд, составленный из абсолютных величин его членов$\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $.

Замечание

Теорема 1 даёт только достаточное условие сходимости знакопеременных рядов . Обратная теорема неверна, т.е. если знакопеременный ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, то не обязательно, что сходится ряд, составленный из модулей $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $ (он может быть как сходящимся, так и расходящимся). Например, ряд $1-\frac{1}{2} +\frac{1}{3} -\frac{1}{4} +...=\sum \limits _{n=1}^{\infty }\frac{(-1)^{n-1} }{n} $ сходится по признаку Лейбница, а ряд, составленный из абсолютных величин его членов, $\sum \limits _{n=1}^{\infty }\, \frac{1}{n} $ (гармонический ряд) расходится.

Свойство 1

Если ряд $\sum \limits _{n=1}^{\infty }u_{n} $ абсолютно сходится, то он абсолютно сходится при любой перестановке его членов, при этом сумма ряда не зависит от порядка расположения членов. Если $S"$ - сумма всех его положительных членов, а $S""$ - сумма всех абсолютных величин отрицательных членов, то сумма ряда $\sum \limits _{n=1}^{\infty }u_{n} $ равна $S=S"-S""$.

Свойство 2

Если ряд $\sum \limits _{n=1}^{\infty }u_{n} $ абсолютно сходится и $C={\rm const}$, то ряд $\sum \limits _{n=1}^{\infty }C\cdot u_{n} $ также абсолютно сходится.

Свойство 3

Если ряды $\sum \limits _{n=1}^{\infty }u_{n} $ и $\sum \limits _{n=1}^{\infty }v_{n} $ абсолютно сходятся, то ряды $\sum \limits _{n=1}^{\infty }(u_{n} \pm v_{n}) $ также абсолютно сходятся.

Свойство 4 (теорема Римана)

Если ряд условно сходится, то какое бы мы не взяли число А, можно переставить члены данного ряда так, чтобы его сумма оказалась в точности равной А; более того, можно так переставить члены условно сходящегося ряда, чтобы после этого он расходился.

Пример 1

Исследовать на условную и абсолютную сходимость ряд

\[\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot 9^{n} }{n!} .\]

Решение. Данный ряд является знакопеременным, общий член которого обозначим: $\frac{(-1)^{n} \cdot 9^{n} }{n!} =u_{n} $. Составим ряд из абсолютных величин $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\frac{9^{n} }{n!} $ и применим к нему признак Даламбера. Составим предел $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } $, где $a_{n} =\frac{9^{n} }{n!} $, $a_{n+1} =\frac{9^{n+1} }{(n+1)!} $. Проведя преобразования, получаем $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9^{n+1} \cdot n!}{(n+1)!\cdot 9^{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9^{n} \cdot 9\cdot n!}{n!\cdot (n+1)\cdot 9^{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9}{n+1} =0$. Таким образом, ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\frac{9^{n} }{n!} $ сходится, а значит, исходный знакопеременный ряд сходится абсолютно.Ответ: ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot 9^{n} }{n!} $ абсолютно сходится.

Пример 2

Исследовать на абсолютную и условную сходимость ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} $.

  1. Исследуем ряд на абсолютную сходимость. Обозначим $\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} =u_{n} $ и составим ряд из абсолютных величин $a_{n} =\left|u_{n} \right|=\frac{\sqrt{n} }{n+1} $. Получаем ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\, \frac{\sqrt{n} }{n+1} $ с положительными членами, к которому применяем предельный признак сравнения рядов. Для сравнения с рядом $\sum \limits _{n=1}^{\infty }a_{n} =\sum \limits _{n=1}^{\infty }\, \frac{\sqrt{n} }{n+1} $ рассмотрим ряд, который имеет вид $\sum \limits _{n=1}^{\infty }\, b_{n} =\sum \limits _{n=1}^{\infty }\, \frac{1}{\sqrt{n} } \, $. Этот ряд является рядом Дирихле с показателем $p=\frac{1}{2}
  2. Далее исследуем исходный ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} $ на условную сходимость. Для этого проверим выполнение условий признака Лейбница. Условие 1): $u_{n} =(-1)^{n} \cdot a_{n} $, где $a_{n} =\frac{\sqrt{n} }{n+1} >0$, т.е. этот ряд знакочередующийся. Для проверки условия 2) о монотонном убывании членов ряда используем следующий метод. Рассмотрим вспомогательную функцию $f(x)=\frac{\sqrt{x} }{x+1} $, определенную при $x\in }

Вам также будет интересно:

Как определить пол ребенка?
Будущие мамочки до того, как УЗИ будет иметь возможность рассказать, кто там расположился в...
Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....
Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос
22.11.2019 Желанными друзьями девушек являются бриллианты. Однако, без роскошных, богатых...