Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Цветок для шторы своими руками

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань

Как определить пол ребенка?

Релятивистская динамика. Релятивистский импульс. Релятивистская энергия. Четырехмерный вектор энергии-импульса. Что такое релятивистская масса; релятивистский импульс

Специальная теория относительности стала фундаментальной основой по установлению и формированию свойств четвертого измерения. Оно получило название пространства-времени. В это же время начали продвигаться теоретические представления о релятивистской механике . Позже все принципы нового раздела физики получили свои научные подтверждения и до сих пор являются основными принципами изучения физического мира, движения и взаимодействия частиц, представления материи.

Специальная теория относительности

Рисунок 1. Релятивистский импульс. Автор24 - интернет-биржа студенческих работ

Временные и пространственные координаты определенного события в различных инерциальных системах отсчета учитываются при помощи преобразований Лоренца, который поставил под сомнение некоторые постулаты классической механики , которые были сформулированы еще во времена Исаака Ньютона. Согласно специальной теория относительности, представленной в 1905 году Альбертом Эйнштейном, устанавливались закономерности в относительности одновременности событий.

Наиболее важными следствиями специальной теории относительности считаются:

  • сокращение длины;
  • замедление времени;
  • относительности одновременности.

Сегодня все эти явления смогли пройти проверку экспериментальным методом и многократно подтверждены. Ранее ньютоновская классическая механика ссылалась на методы изучения Галилея, где имелись в виду взаимодействия на небольших скоростях видимыми объектами. Позже, когда были сформированы представления об атомной физике, появилось ряд направлений. Их называют квантовой механикой, где основное место отведено релятивистской механике частиц. Преобразования Лоренца предполагали расчет взаимодействия частиц на сверхбольших скоростях, сопоставимых со скоростью света. Релятивистские эффекты на малых скоростях становятся несущественными, и их действие сводится к нулю.

Рисунок 2. Специальная теория относительности. Автор24 - интернет-биржа студенческих работ

Основными постулатами специальной теории относительности стали:

  • законы механики имеют общий вид для всех инерциальных систем отсчета;
  • неопределенное силовое воздействие не может привести к разгону любой частицы к скорости, которая превышала бы распространение света.

При начале изучения релятивистской механики необходимо понимать, что полностью остается в действии только первый закон Ньютона. Остальные предусматривают достаточно серьезные корректировки в части рассмотрения квантовой механики. Третий закон и вовсе при релятивистском подходе не будет действовать и поэтому от него необходимо отказаться. Это говорит о том, что при всестороннем изучении взаимодействия тел на расстоянии необходимо учитывать конечную скорость распространения такого взаимодействия.

Замечание 1

Согласно ньютоновскому методу по третьему закону происходит мгновенная передача взаимодействий. Это некорректно, поскольку контактные взаимодействия предусматривают наличие и равенство сил действия и противодействия. Релятивистский импульс, представляемый в виде того самого непосредственного взаимодействия на малых расстояниях сохраняется.

Релятивистский импульс

Релятивистский импульс задается нескольким производными, одной из которых является инвариантная масса объекта, а другой преобразование Лоренца.

Ньютон в классической физике считал, что время и пространство существуют сами по себе без наблюдателя извне, а скорость распространения света может изменяться в зависимости от системы отсчета. Установлено, что световая скорость по специальной теории относительности выступает в роли инвариантной составляющей. При этом формула движения тела по теории не может иметь основу в системе отсчета.

Релятивистский и ньютоновский импульсы в классической механике примерно равны. Это может сочетаться с относительностью Галилея. Он утверждал, что во всех инерциальных системах отсчета законы движения частиц будут одинаковые. Тогда же были выдвинуты предположения о различной световой скорости. Позже все эти постулаты были практически полностью разрушены. Многочисленные исследования и наблюдения показали совсем другие результаты.

Эйнштейн же представлял свою теорию относительности на основе иных законов и предположений. Он считал, что все законы в физике должны имеет инвариантный характер. Это означало, что в сохранении нуждалось свойство. Оно обязано было оставаться в неизменном виде и не иметь под собой основания по перемене условий измерения. При этом второй закон Ньютона не считается инвариантным по отношению к преобразованию Лоренца, однако введение понятия модифицированного импульса смогли подчинить этот закон специальной теории относительности.

При существенном различии скоростей, когда она ниже световой, импульс в релятивистской механике будет равен импульсу по классической механике. По иному обстоит дело, когда скорость приближается к околосветовой. Тогда релятивистский импульс приобретает свойства бесконечности, а ньютоновский импульс продолжает увеличиваться с линейной скоростью.

Закон сохранения импульса-энергии

Рисунок 3. Закон сохранения импульса и энергии. Автор24 - интернет-биржа студенческих работ

По принципам специальной теории относительности закон сохранения импульса должен выполняться во всех инерциальных системах отсчета. В замкнутой системе законы сохранения импульса и энергии релятивистской механики всегда выполняются одновременно. При сохранении векторной величины можно говорить о сохранении проекций вектора. Четырехмерные векторы преобразуют пространственные и временные координаты определенного события. В этом случае они становятся основными математическими объектами в релятивистской механике.

Энергия покоя частицы устанавливается, когда определенная частица находится в состоянии покоя в некоторой системе отсчета. При этом она все равно обладает энергией, которая зависит от массы изучаемой частицы. Это предположение было подтверждено теорией относительности, когда любая частица обладает определенными показателями энергии. Это явление принято называть энергией покоя.

Согласно представлениям классической механики, масса тела есть величина постоянная. Однако в конце XIX в. на опытах с электронами было установлено, что масса тела зависит от скорости его движения, а именно возрастает с увеличением v по закону

где - масса покоя , т.е. масса материальной точки, измеренная в той инерциальной системе отсчета, относительно которой точка покоится; m - масса точки в системе отсчета, относительно которой она движется со скоростью v .

оказывается инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная от релятивистского импульса :

(5.9)

(5.11)

Из приведенных формул следует, что при скоростях, значительно меньших скорости света в вакууме, они переходят в формулы классической механики. Следовательно, условием применимости законов классической механики является условие . Законы Ньютона получаются как следствие СТО для предельного случая . Таким образом, классическая механика - это механика макротел, движущихся с малыми (по сравнению со скоростью света в вакууме) скоростями.

Вследствие однородности пространства в релятивистской механике выполняется закон сохранения релятивистского импульса : релятивистский импульс замкнутой системы тел сохраняется, т.е. не изменяется с течением времени.

Изменение скорости тела в релятивистской механике влечет за собой изменение массы, а, следовательно, и полной энергии, т.е. между массой и энергией существует взаимосвязь. Эту универсальную зависимость - закон взаимосвязи массы и энергии - установил А. Эйнштейн:

(5.13)

Из (5.13) следует, что любой массе (движущейся m или покоящейся ) соответствует определенное значение энергии. Если тело находится в состоянии покоя, то его энергия покоя

Энергия покоя является внутренней энергией тела , которая складывается из кинетических энергий всех частиц, потенциальной энергии их взаимодействия и суммы энергий покоя всех частиц.

В релятивистской механике не справедлив закон сохранения массы покоя. Именно на этом представлении основано объяснение дефекта массы ядра и ядерных реакций.

В СТО выполняется закон сохранения релятивистской массы и энергии : изменение полной энергии тела (или системы) сопровождается эквивалентным изменением его массы:

Таким образом, масса тела, которая в классической механике является мерой инертности или гравитации, в релятивистской механике является еще и мерой энергосодержания тела.


Физический смысл выражения (5.14) состоит в том, что существует принципиальная возможность перехода материальных объектов, имеющих массу покоя, в электромагнитное излучение, не имеющее массы покоя; при этом выполняется закон сохранения энергии.

Классическим примером этого является аннигиляция электрон-позитронной пары и, наоборот, образование пары электрон-позитрон из квантов электромагнитного излучения:

В релятивистской динамике значение кинетической энергии Е к определяется как разность энергий движущегося Е и покоящегося Е 0 тела:

(5.15)

При уравнение (5.15) переходит в классическое выражение

Из формул (5.13) и (5.11) найдем релятивистское соотношение между полной энергией и импульсом тела:

(5.16)

Закон взаимосвязи массы и энергии полностью подтвержден экспериментами по выделению энергии при протекании ядерных реакций. Он широко используется для расчета энергического эффекта при ядерных реакциях и превращениях элементарных частиц.

Краткие выводы:

Специальная теория относительности - это новое учение о пространстве и времени, пришедшее на смену классическим представлениям. В основе СТО лежит положение, согласно которому никакая энергия, никакой сигнал не может распространяться со скоростью, превышающей скорость света в вакууме. При этом скорость света в вакууме постоянна и не зависит от направления распространения. Это положение принято формулировать в виде двух постулатов Эйнштейна - принципа относительности и принципа постоянства скорости света.

Область применения законов классической механики ограничена скоростью движения материального объекта: если скорость тела соизмерима со скоростью света, то необходимо использовать релятивистские формулы. Таким образом, скорость света в вакууме является критерием, определяющим границу применимости классических законов, т.к. она является максимальной скоростью передачи сигналов.

Зависимость массы движущегося тела от скорости движения определяется соотношением

Релятивистский импульс тела и соответственно уравнение динамики его движения

Изменение скорости в релятивистской механике влечет за собой изменение массы, а, следовательно, и полной энергии:

В СТО выполняется закон сохранения релятивистской массы и энергии: изменение полной энергии тела сопровождается эквивалентным изменением ее массы:

Физический смысл этого соотношения заключается в следующем: существует принципиальная возможность перехода материальных объектов, имеющих массу покоя, в электромагнитное излучение, не имеющее массы покоя; при этом выполняется закон сохранения энергии. Это соотношение является важнейшим для ядерной физики и физики элементарных частиц.

Вопросы для самоконтроля и повторения

1. В чем заключается физическая сущность механического принципа относительности? Чем отличается принцип относительности Галилея от принципа относительности Эйнштейна?

2. Каковы причины создания специальной теории относительности?

3. Сформулируйте постулаты специальной теории относительности.

4. Запишите преобразования Лоренца. При каких условиях они переходят в преобразования Галилея?

5. В чем заключается релятивистский закон сложения скоростей?

6. Как в релятивистской механике масса движущегося тела зависит от скорости?

7. Запишите основное уравнение релятивистской динамики. Чем оно отличается от основного закона ньютоновской механики?

8. В чем заключается закон сохранения релятивистского импульса?

9. Как выражается кинетическая энергия в релятивистской механике?

10. Сформулируйте закон взаимосвязи массы и энергии. В чем его физическая сущность?с . Определить его релятивистский импульс и кинетическую энергию .

Дано: кг; v =0,7c ; с =3· 10 8 м/с.

Найти: р, E k .

Релятивистский импульс протона вычислим по формуле

Кинетическая энергия частицы

где Е - полная энергия движущегося протона; Е 0 - энергия покоя.

Ответ: р = 5,68·10 -19 Н·с; E k = 7,69·10 -11 Дж.

Задачи для самостоятельного решения

1. С какой скоростью должен двигаться стержень, чтобы размеры его в направлении движения сократились в три раза?

2. Частица движется со скоростью v = 8 c . Определить отношение полной энергии релятивистской частицы к ее энергии покоя.

3. Определить скорость, при которой релятивистский импульс частицы превышает ее ньютоновский импульс в три раза.

4. Определить релятивистский импульс электрона, кинетическая энергия которого E k = 1 ГэВ.

5. На сколько процентов увеличится масса электрона после прохождения им в ускоряющем электрическом поле разности потенциалов 1,5 МВ?

Уже на нашей памяти закон сохранения импульса претерпел некоторые изменения. Они, однако, не коснулись самого вакона как такового, просто изменилось понятие импульса. В теории относительности, как оказалось, импульс уже не сохраняется, если его понимать так же, как и прежде. Дело в том, что масса не остается постоянной, а изменяется в зависимости от скорости, а потому изменяется и импульс. Это изменение массы происходит по закону

где m 0 — масса покоящегося тела, с — скорость распространения света. Из этой формулы видно, что при обычных скоростях (если v не очень велико) m очень мало отличается от m 0 , а импульс поэтому с очень хорошей точностью выражается старой формулой.

Компоненты импульса для одной частицы можно записать в виде

где v 2 = v 2 x + v 2 y + v 2 z . Если просуммировать x-компоненты импульсов всех взаимодействующих частиц, то эта сумма как до столкновения, так и после окажется одной и той же. Это и есть закон сохранения импульса в направлении оси х. То же можно сделать и в любом другом направлении.

В гл. 4 мы уже видели, что закон сохранения энергии неверен, если мы не признаем эквивалентности энергии во всех ее формах, т. е. электрической энергии, механической энергии, энергии излучения, тепловой и т. д. Про некоторые из этих форм, например тепло, можно сказать, что энергия «скрыта» в них. Напрашивается вопрос: а не существуют ли также «скрытые» формы импульса, скажем «тепловой импульс»? Дело в том, что импульс утаить невозможно; скрыть его очень трудно по следующим причинам.

Мера тепловой энергии — случайного движения атомов тела — представляет собой просуммированные квадраты их скоростей. В результате получается некоторая положительная величина, не имеющая направленного характера. Так что тепло как бы заключено внутри тела независимо от того, движется ли оно как целое или нет. Поэтому сохранение энергии в тепловой форме не очень очевидно. С другой стороны, если мы просуммируем скорости, которые имеют направление, и в результате получим не нуль, то это означает, что само тело целиком движется в некотором направлении, а такое макродвижение мы уже способны наблюдать. Так что никакой случайной внутренней потери импульса не существует: тело обладает определенным импульсом, только когда оно движется целиком. В этом и состоит основная причина того, что импульс трудно скрыть. Но тем не менее скрыть его все же можно, например в электромагнитное поле. Это еще одна из особенностей теории относительности.

Ньютон считал, что взаимодействие на расстоянии должно быть мгновенным. Но это, оказывается, неверно. Возьмем, например, электрические силы. Пусть электрический заряд, расположенный в некоторой точке, вдруг начинает двигаться, тогда его действие на другой заряд в другой точке не будет мгновенным: существует небольшое запаздывание. При таком положении, даже если силы действия и противодействия равны между собой, импульсы не будут компенсироваться. Существует небольшой промежуток времени, в течение которого будет происходить нечто странное; в то время как первый заряд испытывает какое-то воздействие силы и реагирует на нее изменением своего импульса, второй стоит как ни в чем не бывало и не изменяет импульса. На передачу влияния второму заряду через разделяющее их расстояние требуется некоторое время: «влияние» распространяется не мгновенно, а с некоторой конечной (хотя и очень большой) скоростью 300 000 км/сек. В течение этого крохотного промежутка времени импульс частиц не сохраняется. Но, разумеется, после того как второй заряд испытает влияние первого, импульсы компенсируются, наступает полный порядок, но все-таки в течение некоторого момента закон был нарушен. Мы представляем дело таким образом, что в течение этого интервала существует импульс другого рода, чем импульс частиц mv, и это импульс электромагнитного поля. Если сложить его с импульсами частиц, то эта сумма в любой момент сохраняется. Однако тот факт, что электромагнитное поле может обладать импульсом и энергией, делает его реальностью, а утверждение о том, что между частицами действуют силы, переходит в утверждение о том, что частица создает поле, которое в свою очередь действует на другую частицу. Само же поле имеет многие свойства, аналогичные частицам; оно может нести энергию и импульс. Для иллюстрации рассмотрим еще один пример; в электромагнитном поле могут существовать волны, которые мы называем светом. И вот оказывается, что свет тоже несет какой-то импульс, так что когда он падает на предмет, то передает ему некоторое количество своего импульса. Это эквивалентно действию какой-то силы, ведь освещенный предмет изменяет свой импульс, как будто на него действует некоторая сила. Итак, падая на предмет, свет оказывает на него давление. Хотя это давление очень мало, но достаточно тонкими приборами его все же можно измерить.

Оказывается, что в квантовой механике импульс тоже не mv, а нечто совсем другое. Здесь уже трудно определить точно, что же такое скорость частицы, но импульс все-таки существует. Разница же состоит в том, что когда частицы действуют как частицы, то их импульс по-прежнему mv, но когда они действуют как волны, то импульс уже измеряется числом волн на 1 см: чем больше волн, тем больше импульс. Однако, несмотря на это различие, закон сохранения импульса справедлив и в квантовой механике. Неверными оказались уравнение Ньютона f = ma и все его выводы закона сохранения импульса, тем не менее в квантовой механике в конце концов этот закон продолжает действовать!

Релятивистский импульс

Законы сохранения, как и другие законы природы, должны соблюдаться во всех инерциальных системах отсчета, т. е. быть инвариантными по отношению к преобразованиям Лоренца. Проверим, является ли инвариантным закон сохранения импульса, определяемого как произведение массы тела на его скорость: р = mυ.

Рассмотрим абсолютно неупругое центральное соударение двух одинаковых частиц массы т. При указанных на рис. 50.1 условиях суммарный импульc

частиц сохраняется в системе К" (до и после соударения он равен нулю), В этой системе компоненты скоростей частиц равньп v" 1 x ́ = V, v" 2 x ́ = - V.

Перейдем в систему К. Согласно формуле

Таким образом, до соударения проекция на ось х суммарного импульса частиц равна

После соударения частицы покоятся в системе К", следовательно, движутся со скоростью V относительно системы К. Поэтому проекция суммарного импульса N равна 2mV.

Полученный нами результат означает, что в системе К закон сохранения импульса, определяемого как mυ, не соблюдается. Только при условии, что скорости частиц много меньше с, отличием выражения от 2mV можно пренебречь. Отсюда следует, что определение импульса в виде mυ пригодно только при условии, что υ˂˂c Для скоростей, сравнимых со скоростью света в вакууме, импульс должен быть определен как-то иначе, причем при v/c→0 это новое выражение для импульса должно переходить в ньютоновское выражение

Оказывается, что выражение, обеспечивающее инвариантность закона сохранения импульса, получается из E0.2), если заменить в нем время dt собственным временем частицы dx (которое в отличие от dt является инвариантом). Осуществив такую замену, получим выражение

Здесь dr есть перемещение частицы в той системе отсчета, в которой определяется импульс р, a dτ - промежуток времени, определяемый по часам, движущимся вместе с частицей.

Воспользовавшись формулой D7.3), заменим в

выражении E0.3) промежуток собственного времени dτ промежутком dt, измеренным по часам той системы, в которой определяется импульс частицы (в этой системе частица движется со скоростью v = dr/dt).

В результате получим, что

Таким образом, релятивистское выражение для импульса имеет вид

Из формулы E0.4) следует, что зависимость импульса от скорости является более сложной, чем это предполагается в ньютоновской механике При v˂˂с релятивистское выражение для импульса переходит в ньютоновское выражение р = mυ.

Проверим на примере, рассмотренном в начале

этого параграфа, инвариантность закона сохранения импульса, определяемого формулой E0.4). В системе К", очевидно, сумма релятивистских импульсов частиц равна нулю как до, так и после соударения.

В системе К проекция на ось х суммарного импульса частиц до соударения равна

Таким образом, мы пришли к обескураживающему результату: в системе К импульс после соударения отличается от импульса до соударения.

Таким образом, мы пришли к обескураживающему

результату: в системе К импульс после соударения отличается от импульса до соударения.

Причина кажущегося несохранения импульса в

системе К заключается в том, что, масса М составной частицы равна не 2m, a Соответственно вычисленный по формуле LE0.4) импульс после соударения будет равен

т. е. совпадает с импульсом до соударения.


Похожая информация:

  1. А. В жидком состоянии. Б. В аморфном состоянии. В. В газообразном состоянии. Г. В кристаллическом состоянии. Д. Такое расположение атомов возможно в любом состоянии вещества

Темы кодификатора ЕГЭ: полная энергия, связь массы и энергии, энергия покоя.

В классической динамике мы начали с законов Ньютона, потом перешли к импульсу, а после него - к энергии. Здесь мы ради простоты изложения поступим ровно наоборот: начнём с энергии, затем перейдём к импульсу и закончим релятивистским уравнением движения - модификацией второго закона Ньютона для теории относительности.

Релятивистская энергия

Предположим, что изолированное тело массы покоится в данной системе отсчёта. Одно из самых впечатляющих достижений теории относительности - это знаменитая формула Эйнштейна:

Здесь - энергия тела, - скорость света в вакууме. Поскольку тело покоится, энергия , вычиляемая по формуле (1) , называется энергией покоя .

Формула (1) утверждает, что каждое тело само по себе обладает энергией - просто потому, что оно существует в природе. Образно говоря, природа затратила определённые усилия на то, чтобы «собрать» данное тело из мельчайших частиц вещества, и мерой этих усилий служит энергия покоя тела. Энергия эта весьма велика; так, в одном килограмме вещества заключена энергия

Интересно, какое количество топлива нужно сжечь, чтобы выделилось столько энергии? Возьмём, например, дерево. Его удельная теплота сгорания равна Дж/кг, поэтому находим: кг . Это девять миллионов тонн!

Ещё для сравнения: такую энергию единая энергосистема России вырабатывает примерно за десять дней.

Почему столь грандиозная энергия, содержащаяся в теле, до сих пор оставалась нами незамеченной? Почему в нерелятивистских задачах, связанных с сохранением и превращением энергии, мы не учитывали энергию покоя? Скоро мы ответим на этот вопрос.

Поскольку энергия покоя тела прямо пропорциональна его массе, изменение энергии покоя на величину приводит к изменению массы тела на

Так, при нагревании тела возрастает его внутренняя энергия, и, стало быть, масса тела увеличивается! В повседневной жизни мы не замечаем этого эффекта ввиду его чрезвычайной малости. Например, для нагревания воды массой кг на (удельная теплоёмкость воды равна ) ей нужно передать количество теплоты:

Увеличение массы воды будет равно:

Столь ничтожное изменение массы невозможно заметить на фоне погрешностей измерительных приборов.

Формула ( 1 ) даёт энергию покоящегося тела. Что изменится, если тело движется?

Снова рассмотрим неподвижную систему отсчёта и систему , движущуюся относительно со скоростью . Пусть тело массы покоится в системе ; тогда энергия тела в системе есть энергия покоя, вычисляемая по формуле ( 1 ). Оказывается, при переходе в систему энергия преобразуется так же, как и время - а именно, энергия тела в системе , в которой тело движется со скоростью , равна:

( 2 )

Формула ( 2 ) была также установлена Эйнштейном. Величина - это полная энергия движущегося тела. Поскольку в данной формуле делится на «релятивистский корень», меньший единицы, полная энергия движущегося тела превышает энергию покоя. Полная энергия будет равна энергии покоя только при .

Выражение для полной энергии ( 2 ) позволяет сделать важные выводы о возможных скоростях движения объектов в природе.

1. Каждое массивное тело обладает определённой энергией, поэтому необходимо выполнение неравенства

Оно означает, что : скорость массивного тела всегда меньше скорости света.

2. В природе существуют безмассовые частицы (например, фотоны), несущие энергию. При подстановке в формулу ( 2 ) её числитель обращается в нуль. Но энергия-то фотона ненулевая!

Единственный способ избежать здесь противоречия - это принять, что безмассовая частица обязана двигаться со скоростью света . Тогда и знаменатель нашей формулы обратится в нуль, так что формула ( 2 ) попросту откажет. Нахождение формул для энергии безмассовых частиц не входит в компетенцию теории относительности. Так, выражение для энергии фотона устанавливается в квантовой физике.

Интуитивно чувствуется, что полная энергия ( 2 ) состоит из энергии покоя и собственно «энергии движения», т. е. кинетической энергии тела. При малых скоростях движения это показывается явным образом. Используем приближённые формулы, справедливые при :

( 3 )
( 4 )

С помощью этих формул последовательно получаем из ( 2 ):

( 5 )

Таким образом, при малых скоростях движения полная энергия сводится просто к сумме энергия покоя и кинетической энергии. Это служит мотивировкой для определения понятия кинетической энергии в теории относительности:

. ( 6 )

При формула ( 6 ) переходит в нерелятивистское выражение .

Теперь мы можем ответить на заданный выше вопрос о том, почему до сих пор не учитывалась энергия покоя в нерелятивистских энергетических соотношениях. Как видно из ( 5 ), при малых скоростях движения энергия покоя входит в полную энергию в качестве слагаемого. В задачах, например, механики и термодинамики изменения энергии тел составляют максимум несколько миллионов джоулей; эти изменения столь незначительны по сравнению с энергиями покоя рассматриваемых тел, что приводят к микроскопическим изменениям их масс. Поэтому с высокой точностью можно считать, что суммарная масса тел не меняется в ходе механических или тепловых процессов. В результате суммы энергий покоя тел в начале и в конце процесса попросту сокращаются в обеих частях закона сохранения энергии!

Но такое бывает не всегда. В других физических ситуациях изменения энергии тел могут приводить к более заметным изменениям суммарной массы. Мы увидим, например, что в ядерных реакциях отличия масс исходных и конечных продуктов обычно составляют доли процента.Скажем, при распаде ядра урана суммарная масса продуктов распада примерно на меньше массы исходного ядра. Эта одна тысячная доля массы ядра высвобождается в виде энергии, которая при взрыве атомной бомбы способна уничтожить город.

При неупругом столкновении часть кинетической энергии тел переходит в их внутренюю энергию. Релятивистский закон сохранения полной энергии учитывает этот факт: суммарная масса тел после столкновения увеличивается!

Рассмотрим в качестве примера два тела массы , летящих навстречу друг другу с одинаковой скоростью . В результате неупругого столкновения образуется тело массы , скорость которого равна нулю по закону сохранения импульса (об этом законе речь впереди). Согласно закону сохранения энергии получаем:

Мы видим, что, - масса образовавшегося тела превышает сумму масс тел до столкновения. Избыток массы, равный , возник за счёт перехода кинетической энергии сталкивающихся тел во внутреннюю энергию.

Релятивистский импульс.

Классическое выражение для импульса не годится в теории относительности - оно, в частности, не согласуется с релятивистским законом сложения скоростей. Давайте убедимся в этом на следующем простом примере.

Пусть система движется относительно системы со скоростью (рис. 1 ). Два тела массы в системе летят навстречу друг другу с одинаковой скоростью . Происходит неупругое столкновение.

В системе тела после столкновения останавливаются. Давайте, как и выше, найдём массу образовавшегося тела:

Теперь посмотрим на процесс столкновения с точки зрения системы . До столкновения левое тело имеет скорость:

Правое тело имеет скорость:

Нерелятивистский импульс нашей системы до столкновения равен:

После столкновения получившееся тело массы двигается со скоростью .
Его нерелятивистский импульс равен:

Как видим, , то есть нерелятивистский импульс не сохраняется.

Оказывается, правильное выражение для импульса в теории относительности получается делением классического выражения на «релятивистский корень»: импульс тела массы , двигающегося со скоростью , равен:

Давайте вернёмся к только что рассмотренному примеру и убедимся, что теперь с законом сохранения импульса всё будет в порядке.

Импульс системы до столкновения:

Импульс после столкновения:

Вот теперь всё правильно: !

Связь энергии и импульса.

Из формул ( 2 ) и ( 7 ) можно получить замечательное соотношение между энергией и импульсом в теории относительности. Возводим обе части этих формул в квадрат:

Преобразуем разность:

Это и есть искомое соотношение:

. ( 8 )

Данная формула позволяет выявить простую связь между энергией и импульсом фотона. Фотон имеет нулевую массу и движется со скоростью света. Как уже было замечено выше, сами по себе энергия и импульс фотона в СТО найдены быть не могут: при подстановке в формулы ( 2 ) и ( 7 ) значений и мы получим нули в числителе и знаменателе. Но зато с помощью ( 8 ) легко находим: , или

( 9 )

В квантовой физике устанавливается выражение для энергии фотона, после чего с помощью формулы ( 9 ) находится его импульс.

Релятивистское уравнение движения.

Рассмотрим тело массы , движущееся вдоль оси под действием силы . Уравнение движения тела в классической механике - это второй закон Ньютона: . Если за бесконечно малое время приращение скорости тела равно , то , и уравнение движения запишется в виде:

. ( 10 )

Теперь заметим, что - изменение нерелятивистского импульса тела. В результате получим «импульсную» форму записи второго закона Ньютона - производная импульса тела по времени равна силе, приложенной к телу:

. ( 11 )

Все эти вещи вам знакомы, но повторить никогда не помешает;-)

Классическое уравнение движения - второй закон Ньютона - является инвариантным относительно преобразований Галилея, которые в классической механике описывают переход из одной инерциальной системы отсчёта в другую (это означает, напомним, что при указанном переходе второй закон Ньютона сохраняет свой вид). Однако в СТО переход между инерциальными системами отсчёта описывается преобразованиями Лоренца, а относительно них второй закон Ньютона уже не является инвариантным. Следовательно, классическое уравнение движения должно быть заменено релятивистским, которое сохраняет свой вид под действием преобразований Лоренца.

То, что второй закон Ньютона ( 10 ) не может быть верным в СТО, хорошо видно на следующем простом примере. Допустим, что к телу приложена постоянная сила. Тогда согласно классической механике тело будет двигаться с постоянным ускорением; скорость тела будет линейно возрастать и с течением времени превысит скорость света. Но мы знаем, что на самом
деле это невозможно.

Правильное уравнение движения в теории относительности оказывается совсем не сложным.
Релятивистское уравнение движения имеет вид ( 11 ), где p - релятивистский импульс:

. ( 12 )

Производная релятивистского импульса по времени равна силе, приложенной к телу.

В теории относительности уравнение ( 12 ) приходит на смену второму закону Ньютона.

Давайте выясним, как же в действительности будет двигаться тело массы m под действием постоянной силы . При условии из формулы ( 12 ) получаем:

Остаётся выразить отсюда скорость:

. ( 13 )

Посмотрим, что даёт эта формула при малых и при больших временах движения.
Пользуемся приближёнными соотношениями при :

, ( 14 )

. ( 15 )

Формулы ( 14 ) и ( 15 ) отличаются от формул ( 3 ) и ( 4 ) только лишь знаком в левых частях. Очень рекомендую вам запомнить все эти четыре приближённых равенства - они часто используются в физике.

Итак, начинаем с малых времён движения. Преобразуем выражение ( 13 ) следующим образом:

При малых имеем:

Последовательно пользуясь нашими приближёнными формулами, получим:

Выражение в скобках почти не отличается от единицы, поэтому при малых имеем:

Здесь - ускорение тела. Мы получили результат, хорошо известный нам из классической механики: скорость тела линейно растёт со временем. Это и не удивительно - при малых временах движения скорость тела также невелика, поэтому мы можем пренебречь релятивистскими эффектами и пользоваться обычной механикой Ньютона.

Теперь переходим к большим временам. Преобразуем формулу ( 13 ) по-другому:

При больших значениях имеем:

Хорошо видно, что при скорость тела неуклонно приближается к скорости света , но всегда остаётся меньше - как того и требует теория относительности.

Зависимость скорости тела от времени, даваемая формулой ( 13 ), графически представлена на рис. 2 .

Начальный участок графика - почти линейный; здесь пока работает классическая механика. Впоследствии сказываются релятивистские поправки, график искривляется, и при больших временах наша кривая асимптотически приближается к прямой .

Вам также будет интересно:

Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....
Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос
22.11.2019 Желанными друзьями девушек являются бриллианты. Однако, без роскошных, богатых...
Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды
При выборе одежды мужчине в первую очередь нужно определиться со стилем, чтобы составлять...