Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Маленькие манипуляторы: советы родителям, которые идут на поводу у ребенка Ребенок манипулятор психология

Проявление туберкулеза при беременности и способы лечения

§68. Превращение одного вида механической энергии в другой. Закон сохранения энергии

В природе, технике и быту можно часто наблюдать превращения одного вида механической, энергии в другой: потенциальной в кинетическую и кинетической в потенциальную, например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.

Очень удобно явление превращения одного вида механической энергии в другой наблюдать на приборе, изображенном на рисунке 176. Накручивая на ось нить, поднимают диск прибора. Диск, поднятый вверх, обладает некоторой потенциальной энергией. Если его отпустить, то он, вращаясь, начнет падать. По мере.падения потенциальная энергия диска уменьшается, но вместе, с тем.возрастает его кинетическая энергия. В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты. Поднявшись вверх, диск снова падает, а затем снова поднимается. В этом опыте при движении диска вниз его потенциальная энергия превращается в кинетическую , а при движении вверх кинетическая энергия превращается в потенциальную.

Превращение энергии из одного вида в другой происходит также при ударе двух каких-нибудь упругих тел, например резинового мяча о пол или стального шарика о стальную плиту.

Если поднять над стальной плитой стальной шарик (рис. 177) и выпустить затем его из рук, то он будет падать. По мере падения шарика его потенциальная энергия убывает, а кинетическая растет, так как увеличивается скорость движения шарика. При ударе шарика о плиту произойдет сжатие, как шарика, так и плиты, и кинетическая энергия, которой шарик обладал, превратится в потенциальную энергию сжатой плиты и сжатого шарика. Затем благодаря действию упругих сил плита и шарик примут свою первоначальную форму, шарик отскочит от плиты, а их потенциальная энергия вновь превратится в кинетическую энергию шарика: шарик отскочит вверх со скоростью, равной скорости, которой обладал в момент удара о плиту. При подъеме вверх скорость шарика, а следовательно, и его кинетическая энергия уменьшается, потенциальная энергия растет. Отскочив от плиты, шарик поднимается почти до той же высоты, с которой начал падать. В верхней точке подъема вся его кинетическая энергия вновь превратится в потенциальную.

Явления природы обычно сопровождаются превращением одного вида энергии в другой.

Энергия может и передаваться от одного тела к другому. Так, например, при стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.

Вопросы. 1. Как на опыте можно показать превращение одного вида механической энергии в другой? 2. Какие превращения энергии происходят при ударе стального шарика о стальную плиту? 3. Какие превращения энергии происходят при падении воды с плотины?

Упражнения.

  1. Укажите превращение одного вида энергии в другой в следующих ду случаях:
  • при падении воды водопада;
  • при бросании мяча вертикально вверх;
  • при закручивании пружины наручных часов;
  • на примере дверной пружины.
  1. Массы падающих тел одинаковы. Одинаковы ли значения потенциальной энергии тел на одной и той же высоте и одинаковы ли значения кинетической энергии на этой высоте?
  2. Приведите примеры тел, обладающих одновременно кинетической и потенциальной энергией.

Задания.

  1. Изготовьте нитяной и пружинный маятники. Пронаблюдайте за их колебаниями. Кратко опишите превращения энергии, происходящие при колебании этих маятников.

Указание.

Нитяной маятник состоит из нити, на конце которой укреплен груз.

Пружинный маятник представляет собой пружину, к концу которой подвешен груз. Во время опыта верхний конец пружины укрепляют или держат в руке, груз слегка оттягивают вниз и отпускают.

  1. Прочтите в конце учебника параграф «Энергия движущейся воды и ветра. Гидравлические и ветряные двигатели». Подготовьте доклады на темы:
  • От водяных колес до современных гидротурбин.
  • Ветряные двигатели и их применение .

1. Приведите примеры превращения кинетической энергии в потенциальную.

Ответ: взлет самолета.

2. Приведите примеры превращения потенциальной энергии в кинетическую.

Ответ: тело падает с высоты с начальной скоростью равной нулю.

3. Приведите примеры тел, которые одновременно обладают и потенциальной и кинетической энергией.

Ответ: водопад, набирающий высоту самолет.

4. Приведите примеры передачи энергии от одного тела к другому.

5. Мяч массой m =0,5 кг свободно падает на землю с высоты h=10 м. Определите его потенциальную энергию на этой высоте, кинетическую энергию и скорость мяча в момент удара о землю.

6. За счет какой энергии совершают работу гидравлические двигатели? Приведите примеры.

7. Какую энергию используют ветряные двигатели? Приведите примеры.

Ответ: ветряные двигатели используют энергию движущегося воздуха - ветра. Энергию ветра иногда называют энергией «голубого огня».

8. Почему ограничено применение ветряных двигателей?

Ответ: экономически целесообразно использовать ветродвигательные установки там, где ветры дуют часто и сильно. Например, в Поволжье, на Алтае.

9. В чем преимущества водяных и воздушных двигателей?

Итоговые тесты
Вариант 1

1. Тело массой 20 кг держат на высоте 0,5 м над столом. Какая работа совершается при этом за 10 с?

Ответ: 1. 10 Дж

2. Насос откачивает бассейн (25х6х2) м3 за 9,8 мин. его мощность

3. Ракета, летящая со скоростью u, разгоняется до вдвое большей скорости. В результате сгорания топлива полная масса ракеты уменьшается вдвое по сравнению с массой до разгона, а кинетическая энергия

Ответ: 1. увеличивается в 2 раза

4. Сможет ли автомобиль, разогнавшийся до скорости 108 км/ч, при отключенном двигателе въехать на холм высотой 30 м? какова скорость автомобиля на вершине холма?

Ответ: 3. да, 64 км/ч

5. Груз весом 20 Н находится на вытянутой руке. Длина руки 60 см. Расстояние от плеча до локтя 30 см. Момент силы относительно локтя и плеча равен

Ответ: 1. 6 Н·м, 12 Н·м

Итоговые тесты
Вариант 1

1. Пять словарей толщиной по 10 см и массой по 2 кг лежат рядом на столе высотой 1 м. Какая работа потребуется, чтобы уложить их друг на друга в одну стопку?

Ответ: 5. нет правильного ответа

2. Для разгона автомобиля массой 1,5 т до скорости 72 км/ч за 5 с требуется мощность

Ответ: 4. 100 кВт

3. Пружина, накопившая энергию при сжатии ее на 3 см, возвращается к положению равновесия. Затем происходит сжатие н а6 см. Энергия, накопленная пружиной при повторном сжатии, по сравнению с первоначальной

Ответ: 1. вдвое больше

4. Тележка, съезжая с горки без начальной скорости, приобретает у ее подножия скорость 12 м/с. Если тележка начинает движение с горки со скоростью 5 м/с, ее скорость у подножия становится равной

Ответ: 4. 13 м/с

5. Пренебрегая массой рычага, найдите показание стрелочных весов (см. рис.)

При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот .

Превращения энергии при колебаниях

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине (см. §2.2): E = E k + E p = m υ 2 2 + k x 2 2 , ω 0 2 = k m , (E p) max = k x m 2 2 , (E k) max = m υ m 2 2 = m ω 0 2 x m 2 2 = (E p) max .

Для малых колебаний математического маятника (см. §2.3): E = E k + E p = m υ 2 2 + m g h = m υ 2 2 + m g x 2 2 l , ω 0 2 = g l , (E p) max = m g h m = m g x m 2 2 l , (E k) max = m υ m 2 2 = m ω 0 2 x m 2 2 = (E p) max .

Здесь h m – максимальная высота подъема маятника в поле тяготения Земли, x m и υ m = ω 0 x m – максимальные значения отклонения маятника от положения равновесия и его скорости.

Превращения энергии при свободных механических колебаниях в отсутствие трения можно проиллюстрировать графически. Рассмотрим в качестве примера колебания груза массой m на пружине жесткости k . Пусть смещение x (t) груза из положения равновесия и его скорость υ (t) изменяются со временем по законам: x (t) = x m cos (ω 0 t) , где ω 0 2 = k m , υ (t) = –ωx m sin (ω 0 t) .

Следовательно, E p (t) = 1 2 k x 2 = 1 2 k x m 2 cos 2 ω 0 t = 1 4 k x m 2 (1 + cos 2 ω 0 t) , E k (t) = 1 2 m υ 2 = 1 2 k ω 0 2 x m 2 sin 2 ω 0 t = 1 4 k x m 2 (1 - cos 2 ω 0 t) .

На рис. 2.4.1 изображены графики функций E p (t) и E k (t) . Потенциальная и кинетическая энергии за период колебаний T = 2 π ω 0 два раза достигают максимальных значений. Сумма E p (t) + E k (t) = E = const остается неизменной.

Превращения энергии при свободных колебаниях

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими (рис. 2.4.2).

Затухающие колебания

Скорость затухания колебаний зависит от величины сил трения. Интервал времени τ , в течении которого амплитуда колебаний уменьшается в e ≈ 2,7 раз, называется временем затухания.

Частота свободных колебаний зависит от скорости их затухания. При возрастании сил трения собственная частота уменьшается. Однако, изменение собственной частоты становится заметным лишь при достаточно больших силах трения, когда собственные колебания затухают быстро.

Важной характеристикой колебательной системы, совершающей свободные затухающие колебания, является добротность Q . Этот параметр определяется как число N полных колебаний, совершаемых системой за время затухания τ , умноженное на π : Q = π N = π τ T .

Чем медленнее происходит затухание свободных колебаний, тем выше добротность Q колебательной системы. Добротность колебательной системы, определенная по затуханию колебаний на рис. 2.4.2, приблизительно равна 15 .

Добротности механических колебательных систем могут быть очень высокими – порядка нескольких сотен и даже тысяч.

Понятие добротности имеет глубокий энергетический смысл. Можно определить добротность Q колебательной системы следующим энергетическим соотношением: Q = 2 π Запас энергии в колебательной системе Потеря энергии за 1 период колебаний.

Таким образом, добротность характеризует относительную убыль энергии колебательной системы из-за наличия трения на интервале времени, равном одному периоду колебаний.

Взаимное превращение двух видов механической энергии удобно описывать с помощью графика. Полная энергия не зависит от высоты Л и является постоянной величиной. Полная энергия тела совпадает с потенциальной энергией в той точке графика, в которой пересекаются две прямые: прямая полной энергии и прямая, описывающая зависимость потенциальной энергии от высоты.

Легко понять, что высоте, где пересекаются прямые, соответствует кинетическая энергия, равная нулю. Иначе говоря, на этой высоте тело, брошенное вверх, останавливается и начинает свое движение вниз. Если в процессе движения тело не испытывает сопротивления движению, то тело достигнет поверхности Земли с той же скоростью, мало в начале подъема. В момент столкновения с Землей кинетическая энергия этого тела переходит в потенциальную энергию деформированного тела. Если деформация упругая, вся потенциальная энергия деформированного тела перейдет в кинетическую энергию его движения, но при этом скорость уже направлена вертикально вверх.

Закон сохранения полной механической энергии предусматривает взаимное превращение кинетической энергии в потенциальную и наоборот, в одинаковых количествах. При этом полная механическая энергия остается неизменной.

Вопрос к ученикам во время изложения нового материала

1. При каких условиях полная механическая энергия системы тел сохраняется?

2. Почему при действии силы трения закон сохранения механической энергии нарушается?

3. Груз, подвешенный к пружине, совершает колебания в вертикальном направлении. Какие преобразования энергии при этом происходят? В каких положениях груза потенциальная энергия системы «груз и пружина» является максимальной?

4. На какой вид энергии преобразуется часть полной механической энергии, если на тела системы действуют внешние силы?

Закрепление изученного материала

1. Тренируемся решать задачи

1. Камень бросили вертикально вверх со скоростью 10 м / с. На какой высоте кинетическая энергия камня будет одинаковой с его потенциальной энергии?

2. Тело находится в состоянии покоя, падает с высоты 20 м. На какой высоте скорость его движения равна 10 м / с? С какой скоростью тело упадет на землю?

3. Тело бросили со скоростью 15 м / с под углом к горизонту. Вычислите его скорость на высоте 10 м.

4. Футбольный мяч после удара поднялся на высоту 15 м. Почему равнялась его скорость на этой высоте, если начальная скорость мяча составляла 20 м / с? Сопротивлением воздуха можно пренебречь.

2. Контрольные вопросы

1. Резиновый мяч упал на пол и подскочил вверх. Какие преобразования энергии произошли при этом?

2. Тело соскальзывает по наклонной плоскости так, что его скорость остается неизменной. Изменяется ли при этом полная механическая энергия тела? Какие преобразования энергии при этом происходят?

3. Как изменяется механическая энергия при наличии сил трения?

4. Приведите примеры, когда полная механическая энергия не сохраняется.

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил


Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными . Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости .

Все остальные силы называются неконсервативными . К ним относятся сила трения и сила сопротивления . Их называют также диссипативными силами. Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту. Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Е п = m ɡ h ,

где m – масса тела

ɡ - ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с 2

При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = - ( E п2 – E п1) = - ∆ E п ,

где E п1 – потенциальная энергия тела на высоте h 1 ,

E п2 - потенциальная энергия тела на высоте h 2 .

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Е п = k·(∆x) 2 /2 ,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

E k = E k 2 - E k 1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Е k 1 + Е п1 = Е k 2 + Е п2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю. Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной. Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной . Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
E k1 + E п1 = E k2 + E п2 ,
где E k1 , E п1 - кинетическая и потенциальная энергии системы до какого-либо взаимодействия, E k2 , E п2 - соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз. Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево. Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона .

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю. Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению. Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.

Вам также будет интересно:

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань
Одним из любимейших сказочных героев является кот в сапогах. И взрослые, и дети обожают...
Как определить пол ребенка?
Будущие мамочки до того, как УЗИ будет иметь возможность рассказать, кто там расположился в...
Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....