Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Как играть с видом от первого лица в GTA V Как сделать вид от первого лица в гта 5 на ps3

Цветок для шторы своими руками

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань

Как определить пол ребенка?

Источники энергии. Жизнь под солнцем. Приливы и волны

Ограниченные запасы ископаемого топлива и глобальное загрязнение окружающей среды заставило человечество искать возобновляемые альтернативные источники такой энергии, чтобы вред от ее переработки был минимальным при приемлемых показателях себестоимости производства, переработки и транспортировки энергоресурсов.

Современные технологии позволяют использовать имеющиеся альтернативные энергетические ресурсы, как в масштабе целой планеты, так и в пределах энергосети квартиры или частного дома.

Буйное развитие жизни на протяжении нескольких миллиардов лет наглядно доказывает обеспеченность Земли источниками энергии. Солнечный свет, тепло недр и химический потенциал позволяют живым организмам осуществлять множественные энергетические обмены, существуя в среде, созданной физическими факторами – температурой, давлением, влажностью, химическим составом.


Круговорот веществ и энергии в природе

Экономические критерии альтернативных источников энергии

Человек издревле использовал энергию ветра как движитель для кораблей, что позволяло развиваться торговле. Возобновляемое топливо из отмерших растений и отходов жизнедеятельности было источником тепла для приготовления пищи и получения первых металлов. Энергия перепада воды приводила в действие мельничные жернова. На протяжении тысячелетий это были основные виды энергии, которые мы теперь называем альтернативными источниками.

С развитием геологии и технологий добычи недр стало экономически выгодней добывать углеводороды и сжигать их для получения энергии по мере необходимости, чем ждать у моря погоды в буквальном смысле, надеясь на удачное совпадение течений, направления ветра, облачности.

Нестабильность и изменчивость погодных условий, а также относительная дешевизна двигателей, работающих на ископаемом топливе, заставили прогресс развиваться по пути использования энергии недр земли.


Диаграмма, демонстрирующая соотношение потребления ископаемых и возобновляемых источников энергии

Усвоенный и переработанный живыми организмами углекислый газ, покоившийся в недрах миллионы лет, снова возвращается в атмосферу при сжигании ископаемых углеводородов, что является источником парникового эффекта и глобального потепления. Благополучие будущих поколений и хрупкое равновесие экосистемы заставляют человечество пересмотреть экономические показатели и использовать альтернативные виды энергии , ведь здоровье дороже всего.

Сознательное использование возобновляемых природой альтернативных источников энергии становится популярным, но, как и прежде, преобладают экономические приоритеты. Но в условиях загородного дома или на даче использование источников альтернативного электричества и тепла может оказаться единственным экономически выгодным вариантом получения энергии, если проведение, подключение и установка линий энергоснабжения окажется слишком дорогой затеей.


Обеспечение удаленного от цивилизации дома минимально необходимым объемом электроэнергии с помощью солнечных панелей и ветрогенератора

Возможности использования альтернативных видов энергии

Пока ученые исследуют новые направления и разрабатывают технологии холодного термоядерного синтеза, домашние мастера могут использовать следующие альтернативные источники энергии для дома:

  • Солнечный свет;
  • Энергия ветра;
  • Биологический газ;
  • Разница температур;

По данным альтернативным видам возобновляемой энергии существуют готовые решения, успешно внедренные в массовое производство. Например – солнечные батареи, ветрогенераторы, биогазовые установки и тепловые насосы различной мощности можно приобрести вместе с доставкой и установкой, чтобы иметь свои альтернативные источники электричества и тепловой энергии для частного дома.


Промышленно выпускаемая солнечная панель, установленная на крыше частного дома

В каждом отдельном случае должен быть свой собственный план обеспечения домашних электроприборов источниками альтернативной электрической энергии, согласно потребностей и возможностей. Например, для питания ноутбука, планшета, зарядки телефона можно использовать источник напряжением 12 В., и переносные адаптеры. Данного напряжения, при достаточном объеме аккумулятора энергии будет достаточно для освещения при помощи .

Солнечные батареи и ветрогенераторы должны заряжать аккумуляторы, ввиду непостоянства освещения и силы энергии ветра. С увеличением мощности альтернативных источников электричества и объема аккумуляторов возрастает энергетическая независимость автономного энергоснабжения. Если требуется подключить к альтернативному источнику электричества электроприборы, работающие от 220 В., то применяют преобразователи напряжения .


Схема, иллюстрирующая питание домашних электроприборов от аккумуляторов, заряжаемых ветрогенератором и солнечными панелями

Альтернативная энергия солнечного излучения

В домашних условиях практически невозможно создать фотоэлементы, поэтому конструкторы альтернативных источников энергии используют готовые комплектующие, собирая генерирующие конструкции, добиваясь необходимой мощности. Соединение фотоэлементов последовательно увеличивает выходное напряжение полученного источника электричества, а подключение собранных цепочек параллельно дает больший суммарный ток сборки.


Схема подключения фотоэлементов в сборке

Ориентироваться можно на интенсивность энергии солнечного излучения – это примерно один киловатт на квадратный метр. Также нужно учитывать коэффициент полезного действия солнечных батарей – на данный момент это приблизительно 14%, но ведутся интенсивные разработки для увеличения КПД солнечных генераторов. Выходная мощность зависит от интенсивности излучения и угла падения лучей.

Можно начать с малого – приобрести одну или несколько небольших солнечных батарей, и иметь источник альтернативного электричества на даче в объеме, необходимом для зарядки смартфона или ноутбука, чтобы иметь доступ к глобальной сети интернет. Замеряя ток и напряжение, изучают объемы потребления энергии, обдумывая перспективу дальнейшего расширения использования источников альтернативной электроэнергии.


Установка дополнительных солнечных батарей на крыше дома

Нужно помнить, что солнечный свет также является источником теплового (инфракрасного) излучения, которое может использоваться для нагрева теплоносителя без дальнейшего преобразования энергии в электричество. Данный альтернативный принцип применяется в солнечных коллекторах , где при помощи отражателей инфракрасное излучение концентрируется и передается теплоносителем в систему отопления.


Солнечный коллектор в составе домашней системы отопления

Альтернативная энергия ветра

Простейший путь для самостоятельного создания ветрогенератора – это использовать автомобильный генератор. Для увеличения оборотов и напряжения источника альтернативного электричества (эффективности генерации электрической энергии) следует применить редуктор или ременную передачу. Объяснение всевозможных технологических нюансов выходит за рамки данной статьи – нужно изучать принципы аэродинамики, чтобы понять процесс преобразования скорости потока воздушных масс в альтернативное электричество.

На начальном этапе изучения перспектив преобразования возобновляемых источников альтернативной энергии ветра в электричество, нужно выбрать конструкцию ветряка. Наиболее распространенные конструкции – это лопастной винт с горизонтальной осью, ротор Савониуса, и турбина Дарье. Лопастной винт с тремя лопастями в качестве источника альтернативной энергии – наиболее распространенный вариант для самодельного изготовления.


Разновидности турбин Дарье

При проектировании лопастей винтов большое значение имеет угловая скорость вращения ветряка. Существует так называемый фактор эффективности винта, который зависит от скорости воздушного потока, а также длины, сечения, количества и угла атаки лопастей.

Обобщенно данную концепцию можно понять так – при малом ветре длины лопасти с самым удачным углом атаки будет недостаточно для достижения максимальной эффективности генерации энергии, но с многократным усилением потока и увеличением угловой скорости кромки лопастей будут испытывать чрезмерное сопротивление, которое может их повредить.


Сложный профиль лопасти ветряка

Поэтому длину лопастей рассчитывают исходя из средней скорости ветра, плавно изменяя угол атаки относительно удаления от центра винта. Для предотвращения поломки лопастей при ураганном ветре выводы генератора замыкают накоротко, что препятствует вращению винта. Для приблизительных расчетов можно принимать один киловатт альтернативной электроэнергии от трехлопастного винта диаметром 3 метра при средней скорости ветра 10м/с.


Для создания оптимального профиля лопасти потребуется компьютерное моделирование и ЧПУ станок. В домашних условиях мастера используют подручные материалы и инструменты, стараясь максимально точно воссоздать чертежи альтернативных источников ветровой энергии. В качестве материалов используется дерево, метал, пластик и т.д.


Самодельный винт ветрогенератора, сделанный из дерева и металлической пластины

Для генерации электричества мощности автомобильного генератора может оказаться недостаточно, поэтому мастера своими руками изготавливают генерирующие электрические машины, или переделывают электродвигатели. Наиболее популярная конструкция источника альтернативного электричества – ротор с попеременно размещенными неодимовыми магнитами и статором с обмотками.


Роторы самодельного генератора
Статор с обмотками для самодельного генератора

Альтернативная энергия биогаза

Биологический газ в качестве источника энергии получают в основном двумя способами – это пиролиз и анаэробное (без доступа кислорода) разложение органических веществ. Для пиролиза требуется лимитированная подача кислорода, необходимая для поддержания температуры реакции, при этом выделяются горючие газы: метан, водород, угарный газ и другие соединения: углекислый газ, уксусная кислота, вода, зольные остатки. В качестве источника для пиролиза лучше всего подходит топливо с большим содержанием смол. На видео ниже показана наглядная демонстрация выделения горючих газов из древесины при нагреве.


Для синтеза биогаза из отходов жизнедеятельности организмов применяются метантанки различных конструкций. Устанавливать метантанк дома своими руками имеет смысл при наличии в домашнем хозяйстве курятника, свинарника и поголовья крупного рогатого скота. Основной газ на выходе – метан, но большое количество примеси сероводорода и других органических соединений требует применения систем очищения для удаления запаха и предотвращения засорения горелок в тепловых генераторах или загрязнения топливных трактов двигателя.

Нужно основательное изучение энергии химических процессов, технологий с постепенным набором опыта, пройдя путь проб и ошибок, чтобы получить на выходе источника горючий биологический газ приемлемого качества.

Независимо от происхождения, после очистки смесь газов подается в теплогенератор (котел, печь, конфорка плиты) или в карбюратор бензинового генератора, — такими способами получается полноценная альтернативная энергия своими руками. При достаточной мощности газогенераторов возможно не только обеспечение дома альтернативной энергией, но и обеспечивается работа небольшого производства, как показано на видео:

Тепловые машины для экономии и получения альтернативной энергии

Тепловые насосы широко применяются в холодильниках и кондиционерах. Было замечено, для перемещения тепла требуется в несколько раз меньше энергии, чем для его генерации. Поэтому студеная вода из скважины имеет тепловой потенциал относительно морозной погоды. Понижая температуру проточной воды из скважины или из глубин незамерзающего озера, тепловые насосы отбирают тепло и передают его в систему отопления, при этом достигается значительная экономия электричества.


Экономия электроэнергии с помощью теплового насоса

Другой тип тепловой машины – двигатель Стирлинга, работающий от энергии разницы температур в замкнутой системе цилиндров и поршней, размещенных на коленчатом вале под углом 90º. Вращение коленвала может использоваться для генерации электричества. В сети имеется множество материалов из проверенных источников, подробно объясняющих принцип действия двигателя Стирлинга, и даже приводятся примеры самодельных конструкций, как на видео ниже:


К сожалению, домашние условия не позволяют создать двигатель Стирлинга с параметрами выхода энергии выше, чем у забавной игрушки или демонстрационного стенда. Для получения приемлемой мощности и экономичности требуется, чтобы рабочий газ (водород или гелий) был под большим давлением (200 атмосфер и больше). Подобные тепловые машины уже используются в солнечных и геотермальных электростанциях и начинают внедряться в частный сектор.


Двигатель Стирлинга в фокусе параболического зеркала

Чтобы получить максимально стабильное и независимое электричество на даче или в частном доме потребуется совмещения нескольких альтернативных источников энергии.

Новаторские идеи по созданию альтернативных источников энергии

Целиком и полностью охватить весь спектр возможностей возобновляемой альтернативной энергетики не сможет ни один знаток. Альтернативные источники энергии имеются буквально в каждой живой клетке. Например, водоросль хлореллы давно известна как источник белков в корме для рыб.

Ставятся опыты по выращиванию хлореллы в невесомости, для применения в качестве пищи космонавтов при дальних космических перелетах в будущем. Энергетический потенциал водорослей и других простых организмов изучается для синтеза горючих углеводородов.


Аккумулирование солнечного света в живых клетках хлореллы, выращиваемой в промышленных установках

Нужно иметь в виду, что преобразователя и аккумулятора энергии солнечного света лучшего, чем фторопласт живой клетки пока не придумано. Поэтому потенциальные возобновляемые источники альтернативного электричества имеются в каждом зеленом листе, осуществляющем фотосинтез .

Основная сложность состоит в том, чтобы собрать органический материал, при помощи химических и физических процессов достать оттуда энергию и преобразовать ее в электричество. Уже сейчас большие площади аграрных земель отводятся под выращивание альтернативных энергетических культур.


Уборка мискантуса — энергетической агротехнической культуры

Другим колоссальным источником альтернативной энергии может служить атмосферное электричество. Энергия молний огромная и обладает разрушительными воздействиями, и для защиты от них используются молниеотводы.

альтТрудности с обузданием энергетического потенциала молнии и атмосферного электричества состоят в большом напряжении и силе тока разряда за очень короткое время, что требует создания многоступенчатых систем из конденсаторов для накопления заряда с последующим использованием запасенной энергии. Также хорошие перспективы имеются у статического атмосферного электричества.

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.

Сегодня в мире основными источниками энергии выступают: уголь, нефть и природный газ. Все это топливо ископаемое, поскольку происходит оно из окаменевших остатков животных и растений, существующих на земном шаре много миллионов лет назад. Такое топливо используют для обогрева жилья, других зданий, для транспортных средств. Топливо ископаемое является ресурсом необновляемым. То есть на Земле ограничено количество всех этих видов топлива.

По этой причине ученые работают постоянно над поиском других источников энергии, количество которых ограничено не будет. Источники энергии, имеющие свойство возобновляться, являются более чистыми, они не оказывают на окружающую среду такого пагубного воздействия, как ископаемое топливо. К альтернативным источникам энергии относят: солнечную энергию, гидроэнергетику и ветер.

При помощи солнечных батарей можно накапливать солнечное тепло и использовать его для обогрева жилых домов и других зданий. Текущая вода тоже вырабатывает энергию. При падении вниз, вода вращает турбину приводя генератор в действие, который и вырабатывает электричество. Турбины еще применяют для преобразования энергии ветра в электричество.

Ядерная энергия является одним из важных источников энергии, она выделяется при расщеплении атомного ядра. Для производства энергии с помощью возобновляемых источников, ученые еще не решили проблему, которая связана с удешевлением технологии производства такой энергии.

Вы прочитали ответ на вопрос Какие бывают источники энергии? и если понрвился материал то запиши в закладки - » Какие бывают источники энергии? ? .
    Важен ли для нас фотосинтез? Все живое на Земле существует благодаря солнечной энергии. Освещенные лучами солнца растения как бы тянутся к нему и накапливают питательные вещества - углеводы. Этот процесс называется фотосинтезом. В свою очередь люди и животные, потребляя в пищу растения, черпают из них необходимую для жизни энергию. Мощь солнца доходит до нас в виде тепла и света. Тепло рождает ветер, а ветер пригоняет дождевые тучи, вода из которых необходима Как устроен атомный реактор? В атомном реакторе используется энергия, получаемая в результате распада урана. Она дает тепло, с помощью которого вырабатывается электричество. Это принцип работы всех атомных электростанций. Атомный реактор это огромный котел, который вырабатывает водяной пар. Пар в свою очередь вращает турбогенератор, дающий ток. Отдавая энергию, атомное топливо не исчезает. Оно может использоваться в других отраслях атомной энергетики. Атомный реактор был создан в 1942 году в Чикаго (США) Энрико Ферми.

Или в ее недрах. Например, во многих слаборазвитых странах жгут древесину для отопления и освещения жилищ, тогда как в развитых странах для получения электроэнергии сжигают различные ископаемые источники топлива - , . Ископаемые виды топлива представляют собой не возобновляемые источники энергии. Их запасы восстановить невозможно. Ученые сейчас изучают возможности использования неисчерпаемых источников энергии.

Ископаемые виды топлива

Уголь, и газ - невозобновляемые источники энергии, которые сформировались из остатков древних растений и животных, обитавших на Земле миллионы лет назад (подробнее в статье « «). Эти виды топлива добываются из недр и сжигаются для получения электроэнергии. Однако использование ископаемых источников топлива создает серьезные проблемы. При современных темпах потребления известные запасы нефти и газа будут исчерпаны уже в ближайшие 50 лет. Запасов угля хватит лет на 250. При сжигании этих видов топлива образуются газы, под воздействием которых возникает парниковый эффект и выпадают кислотные дожди.

Возобновляемые источники энергии

По мере роста численности населения (см. статью « «) людям требуется все больше энергии, и многие страны переходят к использованию возобновляемых источников энергии - солнца, ветра и . Идея их применения пользуется широкой популярностью, так как это - экологически чистые источники, использование которых не наносит вреда окружающей среде.

Гидроэлектростанции

Энергию воды используют на протяжении многих веков. Вода вращала водяные колеса, использовавшиеся для разных целей. В наши дни построены огромные плотины и водохранилища, и вода применяется для выработки электроэнергии. Течение реки вращает колеса турбин, превращая энергию воды в электроэнергию. Турбина связана с генератором, который вырабатывает электроэнергию.


Земля получает громадное количество . Современная техника позволяет ученым разрабатывать новые методы использования солнечной энергии. Крупнейшая в мире солнечная электростанция построена в пустыне Калифорнии. Она полностью обеспечивает потребности 2000 домов в энергии. Зеркала отражают солнечные лучи, направляя их в центральный бойлер с водой. Вода в нем кипит и превращается в пар, который вращает турбину, связанную с электрогенератором.

Энергия ветра используется человеком уже не первое тысячелетие. Ветер надувал паруса и вращал мельницы. Для использования энергии ветра создавались самые разнообразные устройства, предназначенные для выработки электроэнергии и для других целей. Ветер вращает лопасти ветряка, приводящие в действие вал турбины, связанной с электрогенератором.

Атомная энергия - тепловая энергия, выделяющаяся при распаде мельчайших частиц материи - . Основным топливом для получения атомной энергии является - , содержащийся в земной коре. Многие люди считают атомную энергию энергией будущего, но ее применение на практике создает ряд серьезных проблем. Атомные электростанции не выделяют ядовитых газов, но могут создавать немало трудностей, так как это топливо радиоактивно. Оно излучает радиацию, убивающую все . Если радиация попадает в почву или в , это влечет за собой катастрофические последствия.

Аварии ядерных реакторов и выбросы радиоактивных веществ в атмосферу представляют собой большую опасность. Авария на ядерной электростанции в Чернобыле (Украина), случившаяся в 1986 г., повлекла за собой гибель многих людей и заражение огромной территории. Радиоактивные отходы угрожают всему живому в течение тысячелетий. Обычно их хоронят ни дне морей, но нередки и случаи захоронения отходов глубоко под землей.

Другие возобновляемые источники энергии

В будущем люди смогут использовать множество различных естественных источников энергии. Например, в вулканических районах разрабатывается технология использования геотермальной энергии (тепла земных недр). Другим источником энергии является биогаз, образующийся при гниении отходов. Он может применяться для отопления жилищ и нагревания воды. Уже созданы приливные электростанции. Поперек устьев рек (эстуариев) нередко возводят плотины. Особые турбины, приводимые в действие приливами и отливами, вырабатывают электроэнергию.

Как сделать ротор Савония:

Ротор Савония представляет собой механизм, применяемый крестьянами в Азии и Африке для подачи воды при ирригации. Чтобы самим сделать ротор, вам потребуются несколько чертежных кнопок, большая пластмассовая бутылка, крышка, две прокладки, стержень длиной 1 м и толщиной 5 мм и два металлических кольца.

Как это сделать:

1. Чтобы сделать лопасти, обрежьте бутылку сверху и разрежьте ее пополам вдоль.

2. С помощью чертежных кнопок прикрепите половинки бутылки к крышке. Соблюдайте осторожность при обращении с кнопками.

3. Приклейте прокладки к крышке и воткните в нее стержень.

4. Приверните кольца к деревянному основанию и поставьте ваш ротор на ветру. Вставьте стержень в кольца и проверьте вращение ротора. Выбрав оптимальное положение половины бутылки, приклейте их к крышке прочным водоотталкивающим клеем.

На пороге XXI века человек все чаще стал задумываться о том, что станет основой его существования в новой эре. Люди прошли путь от первого костра до атомных электростанций, однако энергия была и остается главной составляющей жизни человека.

Существуют «традиционные» виды альтернативной энергии: энергия Солнца и ветра, морских волн и горячих источников, приливов и отливов. На основе этих природных ресурсов были созданы электростанции: ветряные, приливные, геотермальные, солнечные.

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество - энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце XIX века энергия играла, в общем, вспомогательную и незначительную роль в мировом балансе, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. С течением времени - гигантские цифры, огромные темпы роста! И все равно энергии будет мало - потребности в ней растут еще быстрее.

Потому ныне перед всеми учеными мира стоит проблема нахождения и разработки новых альтернативных источников энергии. В данной работе будут рассмотрена классификация альтернативных источников энергии, способы нахождения новых видов топлива и опыт России и других зарубежных стран в изобретении и использовании энергосберегающих ресурсов.

1. Альтернативные источники энергии

К альтернативным источникам энергии относят энергию Солнца, земли, ветра, воздуха, атомную и биоэнергию.

Солнечная энергия

Солнце - центр нашей системы из 8 планет (не считая мелких, таких как Плутон, Церера и др.), является первичным и главным источником энергии в нашей системе планет. Являясь большим термоядерным реактором, выделяющим громадное количество энергии, оно согревает Землю, приводит в движение и верхние слои атмосферы, океанские течения и реки. Под воздействием солнечных лучей и благодаря фотосинтезу, на нашей планете вырастает около одного квадриллиона тонн растений, дающих в свою очередь жизнь, 10 триллионам тонн животных организмов. Благодаря совместному труду Солнца, воды и воздуха, за миллионы лет, на 3емле накоплены запасы углеводородов - угля, нефти, газа и пр., которые мы сейчас активно расходуем.

Для удовлетворения потребностей человечества в энергоресурсах, на сегодняшний день, требуется сжечь около десяти миллиардов тонн углеводородного топлива в год. Считается, что на 3емле имеется около шести триллионов тонн различных углеводородов. Если взять энергию, поставляемую на нашу планету Солнцем за год, и перевести в углеводородное топливо, которое мы сжигаем, то получим около ста триллионов тонн, что в десять тысяч раз превышает необходимый нам объем энергоресурсов.

Для обеспечения потребностей человечества энергией на несколько веков хватит и сотой доли той энергии, которая доходит от Солнца до Земли за один год, и если мы сможем взять этот процент, то это бы решило многие проблемы с генерацией энергии на многие века вперед. Как взять этот столь необходимый для нас процент солнечной энергии в теории понятно, дело остается за более совершенными технологиями преобразования энергий. Среди возобновляемых источников энергии, солнечная радиация по объемам ресурсов, распространенности, доступности и экологической чистоте наиболее перспективна.

В начале 20 века многие ученые мира, всерьез задумывались об использовании солнечной энергии. Наш соотечественник, основатель теоретической космонавтики К.Э. Циолковский, во второй части своей книги: "Исследования мировых пространств реактивными приборами" писал следующее: "Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два млрд. раз большую, чем та, которую человечество имеет на Земле".

Альберт Эйнштейн основатель всемирно известной теории относительности, в 1921 году был удостоен Нобелевской премии за объяснение законов внешнего фотоэффекта. В 1905 году была опубликована его работа, в которой, опираясь на гипотезу Планка, Эйнштейн описал как именно и в каких количествах кванты света выбивают из металла электроны. Применить данную гипотезу на практике впервые удалось советским физикам в 30-е годы под руководством знаменитого академика А.Ф. Иоффе.

В Физикотехническом институте, были разработаны и созданы первые сернисто-талиевые фотоэлементы, правда, КПД этих элементов не дотягивал до 1%.

Позднее в 1954 году американскими учеными Пирсоном, Фуллерром и Чапином был запатентован первый элемент с КПД порядка 6%. В 70-х годах КПД солнечных фотоэлементов приближался к 10%, но их производство было довольно дорого и экономически неоправданно, посему использование солнечных батарей в основном ограничивалось космонавтикой. Для производства элементов, требовался кремний (Si, силициум) высокой отчистки и особого качества, в сравнении со стоимостью сжигаемых углеводородов, переработка кремния виделась дорогой и неоправданной, хотя данный элемент таблицы Менделеева в изобилии располагается на пляжах в виде песка (SiO 2). Вследствие чего, исследования по разработке технологий в области солнечной энергетики, были урезаны в финансировании или и вовсе свернуты.

К началу 21 века КПД солнечных батарей удалось увеличить до 20%. Несложно догадаться, почему человечество отступило от разработки солнечной энергии. В середине прошлого века наша цивилизация разгадала тайну ядерной энергии, и все силы науки были брошены на поиски новых способов обогащения урана и создание более совершенных ядерных реакторов, в ущерб технологиям для выработки кремния и разработки новых видов солнечных элементов.

Тем не менее, все это выглядит немного странно, учитывая тот факт, что более прогрессивные технологии получения силициума давно существуют. Еще в 1974 году фирмой Siemens (Германия) была разработана технология получения кремния с помощью карботермического цикла, что понизило себестоимость процесса на порядок. Однако для данной технологии требуется уже не обычный песок, а так называемые особо чистые кварцы, запасы которых в нашей стране самые крупные, что, несомненно, выгодно для России, ведь имеющихся запасов хватит на всех.

Солнечные батареи как форма использования солнечной энергии

Солнце - мощнейший источник энергии в нашей солнечной системе. Давление в его внутренней части порядка 100 миллиардов атмосфер, а температура достигает 16 миллионов градусов. До Земли доходит лишь одна двухмиллиардная доля всего излучения. Но даже эта малая часть превосходит по мощности все земные источники энергии (в том числе и энергию земного ядра). Использование солнечной энергии сегодня стало распространенным явлением, а солнечные батареи обретают все большую популярность.
Первые солнечные батареи были использованы в 1957 году при покорении космоса. Их установили на спутник для преобразования солнечной энергии в электрическую, которая была необходима для работы спутника. При создании солнечных батарей используют полупроводниковые материалы, как правило, кремний.

Принцип работы солнечных элементов построен на фотоэлектрическом эффекте - преобразовании энергии света в электричество. Когда солнечная энергия попадает на неоднородный полупроводник (неоднородность может достигаться различными путями, например легированием), в нем создаются неравновесные носители заряда обоих типов. При подключении данной системы к внешней цепи можно «собирать» электроны, соответственно создавая электрический ток. Есть много эффектов, которые отрицательно сказываются на величине получаемого тока (например, частичное отражение солнечных лучей или их рассеяние), поэтому исследовательская работа по созданию наиболее подходящего материала очень актуальна на сегодняшний день.
Солнечные батареи - это большие по площади модули, которые собираются из отдельных элементов. Эти элементы - это обычно небольшие пластины (размеры которых в среднем 130×130мм), с припаянными к ним контактами.
Этот вид энергии абсолютно экологичен, так как нет никаких ядовитых и опасных выбросов в атмосферу, они не загрязняют воду или почву, у них даже отсутствует опасное излучение. К тому же это весьма надежный источник альтернативной энергии - по расчетам ученых солнце будет светить еще несколько миллионов лет. К тому же, энергия солнца абсолютна бесплатна. Другое дело, конечно, что создание самого солнечного элемента является довольно дорогой процедурой.

Но у данного вопроса есть и обратная сторона. Притом, что энергия солнца бесплатна и огромна, она непостоянна. Работа солнечных батарей сильно зависит от погоды. В пасмурную погоду количество вырабатываемого электричества падает в разы, а ночью и вовсе прекращается. Пытаясь как-то справиться с этим, ученые разработали всевозможные аккумуляторы. Но при нагрузке таких огромных солнечных станций, аккумуляторы не выдерживают больше часа. Поэтому использование солнечных батарей возможно только совместно со стабильным источником электроэнергии.
Солнечные батареи распространены в тропических и субтропических регионах. Количество солнечных дней в странах этих регионов максимально, следовательно, максимально и количество вырабатываемого электричества.

Энергию солнца могут использовать не только крупные компании, но и владельцы частных домов. Например в Германии солнечные батареи устанавливаются на крыши домов, что позволяет хозяевам экономить порядка 50% всех затрат на электроэнергию. Учитывая, что стоимость электроэнергии в этой стране довольно высока. В солнечные дни количество перерабатываемой энергии может превышать необходимое. В той же Германии государство скупает эти излишки у частных лиц и перепродает скупленную электроэнергию в ночное время по более низкой цене, чем стимулирует интерес населения к установке солнечных батарей.
В самых безоблачных регионах строятся целые гелиоэлектростанции (ГЕЭС). Принцип их работы несколько отличается от солнечных батарей. Эти солнечные установки концентрируют солнечную энергию и используют ее для приведения в действие турбин, тепловых машин и т.д. В качестве примера можно привести солнечную башню в Испании. Множество зеркал направляют солнечные лучи на ее верхнюю часть, разогревая находящуюся там воду до 250 градусов. Это выгодно по многим параметрам.
Еще одним преимуществом солнечных батарей можно считать их мобильность. Небольшой элемент в условиях яркого солнечного освещения может вырабатывать электроэнергию достаточную, например, для подзарядки сотового телефона или маломощного ноутбука.

Энергия земли

Планета Земля - самый удивительный и загадочный объект, будоражащий умы людей на протяжении многих веков. Она дает жизнь, делясь теплом, водой, пищей, и отбирает ее, обрушиваясь ураганами, землетрясениями, потопами или извержениями вулканов. Для выживания человеку необходима энергия и он берет ее, разворовывая недра нашей планеты: добывает тоннами нефть, уголь, вырубает леса и т.д. Несмотря на то, что наша планета очень богата, ее запасы все же небезграничны. Эта проблема тревожит умы глав государств и научных работников уже не первый год - постоянно ищутся все новые источники альтернативной энергии.

Одним из возможных решений этой насущной проблемы стала геотермальная энергетика, то есть использование внутреннего тепла земли и превращение его в электроэнергию.

Приблизительная температура земного ядра 5000°С, а давление там достигает 361 ГПа. Такие невероятно высокие значения достигаются вследствие радиоактивности ядра. Оно разогревает близлежащие пласты породы, создавая тем самым горячие потоки, размером с континенты. Они медленно поднимаются из глубины земных недр, заставляя двигаться континенты, провоцируя извержения вулканов и землетрясения.

При удалении от ядра температура постоянно уменьшается, но жар при извержении вулканов говорит о том, что даже «низкая» для ядра температура, просто колоссальна. Тепловая энергия земли огромна, но загвоздка в том, что современные технологии пока не позволяют использовать ее если не полностью, то хотя бы наполовину.

В некотором смысле земное ядро можно считать вечным двигателем: есть сильное давление (а оно благодаря гравитации будет всегда), значит есть высокая температура и атомные реакции. Но пока не создано ни технологий, ни материалов, которые смогли бы выдержать столь жесткие условия и позволить добраться до ядра. Сегодня мы можем использовать тепло приповерхностных слоев, температура которых несравнима с тысячами градусов, но вполне достаточна для выгодного ее использования.
Существует несколько способов использования геотермальной энергии. Например, можно использовать горячие подземные воды для обогрева жилых домов, всевозможных предприятий или учреждений. Но больший интерес вызывает использование тепловой энергии для преобразования ее в электроэнергию.

Геотермальную энергию различают по форме, в которой она вырывается из-под земли:

  • «Сухой пар» . Это пар, вырывающийся из-под земли без капелек воды и примесей. Его очень удобно использовать для вращения турбин, вырабатывающих электрическую энергию. А конденсированная вода, как правило, остается довольно чистой и ее можно возвращать обратно в землю или даже в ближайшие водоемы.
  • «Влажный пар» . Это смесь воды и пара. В данном случае задача несколько усложняется, поскольку приходится сначала отделить пар от воды, а лишь потом его использовать. Капли воды могут повредить турбины.
  • «Система с бинарным циклом» . Из-под земли вырывается просто горячая вода. Используя эту воду, изобутан переводят в газообразное состояние. А затем используют изобутановый пар для вращения турбин. Эту воду можно использовать для непосредственного обогрева помещений - централизованное теплоснабжение.

Недостаток таких установок в том, что они привязаны географически к районам геотермальной активности, которые расположены совсем неравномерно по поверхности земли. В России источники геотермальной энергии расположены на Камчатке, Курильских островах и Сахалине - экономически плохо развитых регионах. Поскольку в них слабо развита инфраструктура, они малонаселенны, обладают сложным рельефом местности и высокой сейсмической активностью, эти районы являются экономически невыгодными для создания там тепловых станций. Но ведь это не может стать ограничением тепловой энергии нашей планеты.
В середине 19 века британский физик Уильям Томсон заложил фундамент технологии теплового насоса. Принцип его работы можно объяснить схематично в виде трех замкнутых контуров.

Во внешнем контуре циркулирует так называемый теплоноситель, который поглощает тепло окружающей среды. Обычно этот контур представляет собой трубопровод, который максимально приближен к источнику внешнего тепла (грунт, река, море и т.д.) с циркулирующим антифризом (незамерзающей жидкостью).

Во втором контуре циркулирует вещество, которое испаряется благодаря теплу вещества первого контура, и конденсируется, отдавая тепло веществу последнего третьего контура. Во втором контуре в качестве испаряемого вещества используется хладагент (вещество с низкой температурой испарения). В этот же контур встроены конденсатор, испаритель и устройства, меняющие давление хладагента. Третий контур и является нагревательным элементом, который передает тепло помещениям.
Имеется еще один проект, преобразующий тепло земной коры в электроэнергию. Этот проект разработали ученые одной из национальных лабораторий министерства энергетики США. Технология заключается в бурении двух неглубоких скважин глубиной около четырех километров, которые доходят до твердых скальных пород. Далее скалы дробятся при помощи подземных взрывов, увеличивая глубину скважины. Одна из скважин наполняется водой, где она нагревается до 176 градусов. Притом, что температура сравнительно небольшая, ее вполне хватает для обогрева помещений и выработки электроэнергии. Затем, вода поднимается по другой скважине (ее стараются располагать на значительном удалении от первой) и поступает на электростанцию.

Преимуществом данного метода стала его независимость от геотермальной активности местности - он пригоден для установки почти везде.
Уже достаточно давно умы ученых будоражит еще один вид энергии Земли - энергия магнитного поля. На сегодняшний день не создано ни одного реально существующего проекта. Но огромный потенциал магнитного поля постоянно подталкивает на изобретение все более новых и более хитрых приборов. Одним из которых является электромобиль Тесла. Принцип работы этого прибора так и остался для всех загадкой.

Никола Тесла заменил бензиновый двигатель обычного автомобиля стандартным электромотором переменного тока мощностью в 80л.с., у которого отсутствовали видимые внешние источники питания. Автомобиль мог развивать скорость до 150 км/ч. По заявлению самого ученого машина работала благодаря «эфиру, который вокруг нас!». Современные исследователи полагают, что физик использовал в своем генераторе энергию магнитного поля нашей планеты. Он мог настраивать свою высокочастотную схему переменного тока на резонансную частоту 7,5 Гц. Но это всего лишь догадки.
Такие альтернативные источники энергии, как тепловая или магнитная, вскоре станут не фантазиями или гипотезами, а необходимостью. Ну а благодаря своим преимуществам: высокой экологичности, независимости от местоположения и погодных или климатических условий, низким уровнем затрат на производство и, конечно же, неисчерпаемости, эти источники энергетики становится весьма перспективными.

Энергия ветра Начало формы

Воздух - это ветер, один из альтернативных источников энергии на нашей планете.

Современность определяет ветер, как поток воздуха, движущийся вдоль земной поверхности со скоростью свыше 0,6 м/с. Он возникает из-за неравномерного распределения атмосферного давления, которое постоянно меняется, смещая огромные пласты воздуха из зоны высокого давления в зону низкого. В древности же обо всех этих хитрых определениях не имелось ни единого представления, но это не помешало древним людям научиться использовать энергию ветра в своих целях.

Еще до нашей эры умелые египтяне переплывали Нил на первых парусных лодках. В итоге это стало первым шагом в развитии парусного дела. Не менее изобретательными оказались и викинги. Их боевые парусные корабли, подгоняемые сильными порывами ветра, превосходили по скорости и легкости все корабли Западной Европы, наводя страх и ужас на местное население. Создание первых ветряных мельниц в 12 веке привело к рождению первого печеного хлеба, без которого невозможно представить себе ни один современный стол.

Использование ветряной энергии нашло большое применение в Голландии. Эта страна часто затапливается, поскольку находится ниже уровня моря, и использование энергии ветра в 14 веке для откачки воды с полей позволило ей войти в список самых богатых стран на то время. Впоследствии другие страны Европы стали использовать такой альтернативный источник энергии для достижения обратного эффекта - подачи воды на засушливые поля.

К 19 веку ветряки стали уже привычным делом на людей. К 1900 году в одной только Дании насчитывалось больше двух тысяч ветряных мельниц. А создание первой ветряной мельницы, преобразующей ветер в электроэнергию, стало началом нового витка в истории современной энергетики - ветроэнергетики.

Ветроэнергетика стала весьма перспективной, потому что ветер является возобновляемым источником энергии. Развитие данной отрасли энергетики идет очень активно: к 2008 году общая установленная мощность всех ветрогенераторов составила 120 гигаватт. Поскольку мощность ветрогенератора зависит от площади лопасти генератора, имеется тенденция к увеличению их размеров, и эти сооружения мельницами не назовешь - теперь это турбины.

Большое распространение данный вид энергетики получил в США. К середине 20 века там было построено несколько сотен тысяч турбин. С течением времени ветряные фермы стали весьма распространенным явлением в ветряной Калифорнии, да и по всей территории штатов, а после выхода в свет закона об обязательной скупке коммунальными предприятиями лишней электроэнергии, полученной из ветра, у рядовых граждан, эта область стала привлекательной и материально.

Важным является экологический аспект ветроэнергетики. По данным Global Wind Energy Council к 2050 году эта отрасль поможет уменьшить ежегодные выбросы углекислого газа (СО 2) на 1,5 млрд. тонн. Турбины занимают совсем небольшую площадь ветряной фермы (порядка 1%), следовательно, остальная площадь открыта для сельского хозяйства. Это имеет большое значение в небольших густонаселенных странах.
Значение ветроэнергетики возросло в 1973 году, когда ОПЕК ввело эмбарго на добычу нефти и ежегодно стало отслеживать ее количество. Стоимость на нефть возросла в разы, заставив государства изучать и развивать альтернативные источники энергии. С каждым годом стоимость технологии ветряной электродобычи уменьшается, увеличивая долю ветроэнергетики в общем объёме. На сегодняшний день этот вклад по всему миру составляет всего 2%, но с каждой минутой эта цифра растет.

Энергия воды

Вода - источник жизни на земле. Это одно из самых уникальных и удивительных явлений на нашей планете, обладающее множеством уникальных свойств, использование которых может быть очень выгодно и полезно для человека.

Энергия воды - один из первых источников энергии, который люди научились использовать в своих целях. Так принцип работы первых речных мельниц прост и в то же время гениален: движущийся поток воды вращает колесо, преобразуя кинетическую энергию воды в механическую работу колеса. По сути, все современные гидроэлектростанции работают аналогично, только с одним важным дополнением: далее механическая энергия колеса преобразуется в электрическую.

Энергию воды грубо можно разделить на три типа по ее виду, в котором она преобразовывается:

1. Энергия приливов и отливов . Явление отлива очень интересно и долгое время оно никак не могло быть объяснено. Большие массивные (и разумеется близкие к Земле) космические объекты, такие как Луна или Солнце, действием своей гравитации приводят к неравномерному распределению воды в океане, создавая «горбы» из воды. Из-за вращения земли начинается движение этих «горбов» и их перемещение к берегам. Но из-за того же вращения Земли, положение океана относительно Луны изменяется, уменьшая тем самым действие гравитации.

Во время прилива заполняются специальные резервуары, располагающиеся на береговой линии. Резервуары образуются благодаря дамбам. Во время отлива вода начинает свое обратное движение, которое и используется для вращения турбин и преобразования энергии. Важно, чтобы разница высот во время прилива и отлива была как можно больше, иначе подобная станция просто не сможет себя оправдывать. Поэтому приливные электростанции создаются, как правило, в узких местах, где высота приливов достигает хотя бы 10м. Например, приливная станция во Франции в устье реки Ранс.

Но такие станции имеют и свои минусы: создание дамбы приводит к увеличению амплитуды приливов со стороны океана, а это влечет за собой затопление суши соленой водой. Как следствие - изменение флоры и фауны биологической системы, причем не в самую лучшую сторону.
2. Энергия морских волн. Несмотря на то, что природа этой энергии весьма схожа с энергией приливов и отливов, ее все же принято выделять в отдельную ветвь. Данный вид энергии обладает довольно высокой удельной мощностью (приблизительная мощность волнения океанов достигает 15 кВт/м). Если высота волны будет около двух метров, то это значение может увеличиться до 80 кВт/м. Перевести всю энергию волнения в электрическую не удается, но все же коэффициент преобразования довольно высок - 85%.
На сегодняшний день использование энергии морских волн не особо распространено из-за ряда сложностей, возникающих при создании установок. Пока эта сфера находится только на стадии экспериментальных исследований.
3. Гидроэлектростанции . Этот вид энергии стал доступным для человека благодаря совместной «работе» трех стихий: воды, воздуха и, конечно же, солнца. Солнце испаряет с поверхности озер, морей и океанов воду, образуя облака. Ветер перемещает газообразную воду к возвышенным областям, где она конденсируется и, выпадая в виде осадков, начинает стекать обратно к своим первоисточникам. На пути этих потоков ставятся гидроэлектростанции, которые перехватывают энергию падающей воды и преобразуют ее в электрическую. Мощность, вырабатываемая станцией, зависит от высоты падения воды, поэтому на ГЭС стали создаваться дамбы. Они так же позволяют регулировать величину потока. Создание такого огромного сооружения стоит очень дорого, но ГЭС полностью себя окупает благодаря неисчерпаемости используемого ресурса и свободного доступа к нему.
У данного типа энергии, по аналогии с остальными, имеются как плюсы, так и минусы. Так же как в случае использования энергии приливов, создание ГЭС приводит к затоплению большой площади и нанесению непоправимого ущерба местной фауне. Но даже с учетом этого обстоятельства можно говорить о высокой экологичности ГЭС: они наносят только локальный ущерб, не загрязняя атмосферу Земли. В попытках уменьшить ущерб, наносимый станциями, разрабатываются все более новые методы их работы, постоянно совершенствуется конструкция самих турбин.

Одним из предложенных методов стало «накачивание» аккумуляторов. Вода, прошедшая через турбины не утекает дальше, а накапливается в больших резервуарах. Когда нагрузка на ГЭС становится минимальной, за счет энергии атомной или тепловой станции сохраненная вода перекачивается обратно вверх и все повторяется. Этот метод выигрывает как по экологическим, так и по экономическим показателям.
Еще одну интересную область использования водной энергии придумали эксперты Комиссии по атомной энергетике в Гренобле, Франция. Они предлагают использовать энергию падающего дождя. Каждая падающая капля, попадая на пьезокерамический элемент, воздействует на него физически, что приводит к возникновению электрического потенциала. Далее электрический заряд видоизменяется (так же как в микрофонах электрический сигнал преобразуется в колебания).

Благодаря многообразию своих форм, вода обладает поистине громадным энергетическим потенциалом. На сегодняшний день гидроэнергетика уже весьма развита и составляет 25% от мирового производства электроэнергии, а, учитывая темпы ее развития можно смело говорить, что она является весьма перспективным направлением.

Атомная энергия Начало формы

В конце 20 века проблема поиска альтернативных источников энергии стала весьма актуальной. Несмотря на то, что наша планета поистине богата природными ископаемыми, такими как нефть, уголь, древесина и т.д., все эти богатства исчерпаемые. Поэтому приходится искать все более новые и совершенные источники энергии.

На протяжении долгого времени человечество находило те или иные варианты решения вопроса альтернативных источников энергии, но настоящим прорывом в истории энергетики стало появление ядерной энергии.

Ядерная теория прошла долгий путь развития, прежде чем люди научились применять ее в своих целях. Все началось еще в 1896 году, когда А.Беккерель зарегистрировал невидимые лучи, которые испускала урановая руда, и которые обладали большой проникающей способностью. В дальнейшем это явление получило название радиоактивности.

История развития ядерной энергии содержит в себе несколько десятков выдающихся фамилий, в том числе и советских физиков. Завершающим этапом развития можно назвать 1939 год - когда Ю.Б.Харитон и Я.Б.Зельдович теоретически показали возможность осуществления цепной реакции деления ядер урана-235. Далее развитие ядерной энергетики шло семимильными шагами. По самым приблизительным подсчетам энергию, которая выделяется при расщеплении 1кг урана, можно сравнить с энергией, которая получается при сжигании 2500000кг каменного угля.

В период Второй мировой войны все исследования были перенаправлены в военную область. Первым примером ядерной энергии, который человек смог продемонстрировать всему миру, стала атомная бомба, потом водородная.

Лишь спустя годы научное сообщество обратило свое внимание на более мирные области, где применение ядерной энергии могло бы стать действительно полезным. Так начался рассвет самой молодой области энергетики. Стали появляться атомные электростанции (АЭС), причем первая в мире АЭС была построена в городе Обнинске Калужской области.

На сегодняшний день насчитывается несколько сотен атомных электростанций по всему миру. Развитие ядерной энергетики происходило невероятно стремительно. Меньше чем за 100 лет она смогла достигнуть сверхвысокого уровня технологического развития. То количество энергии, которое выделяется при делении ядер урана или плутония, несравнимо велико - это сделало возможным создание крупных атомных электростанций промышленного типа.

Эту энергию получают в результате цепной реакции деления ядер некоторых радиоактивных элементов. Обычно используется уран-235 или плутоний. Деление ядра начинается, когда в него попадает нейтрон - элементарная частица, не имеющая заряда, но обладающая сравнительно большой массой (на 0,14 % больше, чем масса протона). В результате образуются осколки деления и новые нейтроны, обладающие высокой кинетической энергией, которая в свою очередь активно преобразуется в тепло.
Данный вид энергии производят не только на АЭС. Он так же используется на атомных подводных лодках и атомных ледоколах.
Для нормального функционирования АЭС необходимо топливо. Как правило, это уран. Этот элемент имеет широкое распространение в природе, но при этом труднодоступен. В природе не существует залежей урана (как например нефти), он как бы «размазан» по всей земной коре. Самые богатые урановые руды, которые встречаются очень редко, содержат до 10% чистого урана. Уран обычно содержится в урансодержащих минералах в качестве изоморфно замещающего элемента. Но при всем это общее количество урана на планете грандиозно велико. Возможно, в ближайшем будущем новейшие технологии позволят увеличить процент добычи урана.

Столь мощный источник энергии, а значит и силы, не может не вызывать опасений. Постоянно ведутся споры о его надежности и безопасности. Трудно оценить какой ущерб наносит атомная энергетика окружающей среде. Однако если бы завтра на нашей планете закончились все запасы источников традиционной энергии, то ядерная энергетика, пожалуй, стала бы единственной областью, которая реально смогла бы заменить ее. Нельзя отрицать ее преимущества, но и не стоит забывать о возможных последствиях.

Биоэнергия

С понятием биоэнергии связанно немало путаницы.

По определению биоэнергетика - это отрасль альтернативной энергетики, то есть энергетики, которая считается возобновимой. Количество потребляемой энергии всем человечеством в год - просто огромно. Поэтому встает вопрос о том, сможет ли хоть какой-нибудь ресурс восстанавливаться соответственно скорости его потребления.

Биоэнергия - это совокупность целого спектра альтернативных источников энергии. Этот спектр объединяют одним общим понятием биомасса. По сути это результат жизнедеятельности всех живых организмов нашей планеты.

Ежегодно прирост биомассы на планете достигает 130 млрд. тонн сухого вещества. Это соответствует 660 000 ТВтч в год, притом, что мировой общественности требуется всего лишь 15000 ТВтч в год.
Сегодня более 99% автовладельцев используют топливо, производимое из нефти. И с каждым днем количество автомобилей на дорогах растет. Нефтяное топливо едва ли можно считать возобновляемым. Количество нефти с каждым годом неумолимо уменьшается, что приводит к повышению цены на нее. А поскольку экономика многих стран только развивается, то, несмотря на повышение цен, спрос на нефть все равно будет расти. Замкнутый круг, выходом из которого может стать биотопливо.
Долгое время биотопливо считалось неконкурентоспособным, потому что уступало ископаемому топливу и по производимой мощности и по сложности внедрения. Но постоянно развивающиеся технологии помогли решить эти проблемы. Биотопливо бывает разных типов:

  • жидким : метанол, этанол, биодизель;
  • газообразным: водород, сжиженный нефтяной газ (пропанобутановые фракции);
  • твердым : дрова, уголь, солома.

Недавно созданное жидкое биотопливо отличается своей экологичностью и доступностью, но помимо этого имеет и еще одно важное преимущество. Для перехода на жидкое биотопливо не понадобиться существенных изменений в структуре двигателей и оборудования. Само биотопливо представляет собой сырьё, получаемое при переработке, как правило, семян рапса, сои, стеблей сахарного тростника или кукурузы. Развивается еще много направлений получения органического топлива (например, из целлюлозы).

Природный газ, водород и подобное сырье нельзя отнести к возобновляемым источникам, поэтому их можно считать в определенной степени полумерой при переходе на биотопливо. К тому же, немало трудностей связанно с внедрением такой технологии. Например, водородный двигатель мог бы стать очень перспективным представителем своего «семейства», но для нормального функционирования автомобиля было бы необходимо закрепить целую цистерну на крыше авто, что не очень удобно. А в сжатом состоянии водород очень взрывоопасен.

На помощь пришли новейшие изобретения в области нанотехнологий - разрабатывается проект по созданию нанокапсул для хранения водорода и других взрывоопасных газов. Каждая нанокапсула (модифицированная нанотрубка) будет наполняться определенным количеством молекул газа и «закупориваться» фуллереном, что позволит разделить газ на порции, сделав его безопасным.

Гораздо проще обстоит ситуация с биодизельным топливом. Биодизельное топливо - это растительное масло переэтерифицированное метанолом (иногда может использоваться этанол или изопропиловый спирт). Реакция обычно проходит при нормальном давлении и температуре 60 °С. Растительные масла получают из самых различных представителей флоры (более 20 наименований), но лидером остается Рапс. Это маслянистое растение, которое легко выращивается в сельскохозяйственных условиях.
Но на этом преимущества биоэнергетики не заканчиваются. Помимо того, что она отвечает на актуальные вопросы современности о поиске альтернативных источников энергии и ее экологичности, важно отметить и материальный аспект.

Импорт нефти сильно сказывается на бюджете страны, учитывая постоянное повышение цены на нее. А биотопливо наоборот дешевеет с каждым днем. Отсюда можно утверждать, что экономия при переходе на биотопливо может оказаться весьма существенной.

В феврале 2006 года Евросоюзом был принят документ «Стратегия для биотоплива», который описывает рыночный, законодательный и исследовательский потенциал по увеличению использования биотоплива. Пусть сегодня процентная доля биотоплива в мировой топливной энергетике не достигает даже одного процента, с таким количеством преимуществ ситуация должна сильно измениться уже в ближайшее время.

2. Проблемы энергосбережения в России и за рубежом, пути их решения

Поистине эпохальное для России событие по итогам 2009 года это принятие Федерального закона «Об энергосбережении и повышении энергетической эффективности». За последние несколько лет его проект выдержал не одну редакцию, а бурные дебаты вокруг отдельных положений этого документа приобрели общенациональный масштаб, выплеснувшись за пределы профессионального сообщества и близких к законодательным органам кругов.

Энергорасточительность российских граждан не случайна. В первую очередь она обязана историческим и климатическим факторам. Другим весомым показателем является неразвитость законодательства по сравнению с обширнейшим законодательным опытом развитых стран. В России законотворчество в области энергосбережения только началось, инициативу на комиссии по модернизации и технологическому развитию экономики 30 сентября 2009 года проявил президент Дмитрий Медведев. А 11 ноября 2009 года Государственная дума приняла уже в третьем чтении федеральный закон «Об энергосбережении и повышении энергетической эффективности».

По своему действию он охватит всех и каждого, со времен принятия Налогового кодекса Госдума не рассматривала законопроект, столь масштабно затрагивающий быт буквально каждого гражданина и производство каждой компании. С точки зрения государства это крайне важные шаги. Конечная цель мероприятия - экономия топлива.

Энергопотребление в России достигает почти 1млрд тонн условного топлива. По оценке Минэнерго России, при снижении энергоемкости до европейского уровня наше потребление снизилось бы до 650 млн. тонн условного топлива.

Рассмотрим в качестве важнейших энергосберегающих направлений энергосберегающие лампочки и пассивные дома.

Энергосберегающие лампочки

Обычная лампа накаливания, которая повсеместно используется более сотни лет для освещения, хорошо греет и плохо светит. Ее световая отдача (то есть количество излучаемых люменов на единицу потребляемой мощности) крайне невысока. Аргумент в пользу альтернативных ламп, по большому счету, один - они дают столько же света при меньшем потреблении энергии и более длительном сроке службы.

Однако позиции Дмитрия Медведева по идее замены ламп накаливания на энергоэффективные получила весьма неоднозначное отражение в последующих действиях чиновниках.

С 1 января 2011 года запрещаются приобретение для государственных и муниципальных нужд любых ламп накаливания и оборот ламп накаливания от 100 Вт и выше. Далее законопроект декларирует, что с 1 января 2013 года может быть введен запрет для 75-ваттных лампочек, а с 1 января 2014 года и 25-ваттных. Шедевр «лампы 75 и 25 ватт, может, будут запрещены, а может, нет» не позволяет предприятиям даже в минимальном приближении сформировать свои инвестиционные программы. Нарастить импорт компактных люминесцентных ламп можно в одночасье, а для организации производства нужно как-никак иметь точный план на некоторый, хоть сколько-нибудь приличный срок. Можно с уверенностью прогнозировать, что при таком подходе российскому бизнесу будет крайне сложно инвестировать в новое производство.

Принятый в данной редакции закон приведет к очевидной лихорадке на рынке осветительных приборов, росту импорта дешевых компактных люминесцентных ламп и распространению мнимых фобий, связанных с вредностью и ядовитостью этих ламп.

Принятый закон требует от всех нас тотального перехода на приборный учет производимых, передаваемых и потребляемых энергетических ресурсов. Поскольку прежде чем, что-то сэкономить, надо знать, сколько ты потребил.

Два года отводится населению на тотальное оснащение счетчиками своей собственности - квартир, офисов, складов, заводских помещений. Оплата установки и замены счетчика возлагается на потребителей. Закон «Об энергосбережении» прямо затронет карман граждан. Помимо лампочек придется потратиться как минимум на счетчики энергии, газа, воды и тепла.

Учет электрической энергии, природного газа, тепла и воды технически и экономически решаемая проблема, имеющая наработанные стандартные решения. Однако парадоксальным образом существующая нормативная база сейчас препятствует населению переходить на учет ресурсов по счетчику. Особенно ярко это проявляется в учете воды. Устанавливая счетчик сейчас, гражданин вместо экономии затрат может получить возросшие расходы. До момента, когда все до единого жителя дома сделают то же самое, установивший счетчик будет умножать показания своего прибора на коэффициент, зависящий от числа прописанных в доме, потерь воды, расхода на общедомовые нужды, установленных нормативов потребления воды для жителей, не имеющих счетчиков, а также с учетом фактического потребления.

Чтобы избавиться от этой дикости, когда расходы во многом зависят не от потребления, а от числа прописанных в доме соседей и частоты их водных процедур, мало принять закон об энергосбережении и энергоэффективности. Потребуется тщательно и детально переписать постановление правительства РФ от 23 мая 2006 года №307 «О порядке предоставления коммунальных услуг гражданам».

Следующим шагом по снижению потребления тепла, воды и электрической энергии является перечень мероприятий, которые граждане должны провести сами. Пока списка в природе не существует. Сам перечень и принципы его внедрения установит правительство РФ. Утверждать же его будут региональные власти. Каждые пять лет требования к энергетической эффективности зданий, а, следовательно, и к серьезности проводимых мероприятий будут ужесточаться.

Данные мероприятия будут включать не только замену лампочек. Наверно, будет что-то по замене советских окон на современные стеклопакеты. По большому счету, это все, что доступно отдельно взятому гражданину в отдельно взятой квартире или офисе. Возможны мероприятия, связанные с утеплением и энергосбережением всего дома. В идеальном варианте грамотная управляющая компания сможет заключить энергосервисный договор, который позволит жильцам оплатить утепление фасада в рассрочку, за счет экономии от снижения потребления тепла. Вместо типовых технических решений и финансово-правовых механизмов улучшения действующего жилого фонда закон надеется на живое творчество масс и жэков.

К сожалению, законопроект практически не замечает и принципиальной разницы между новым строительством и уже построенными зданиями. В области нового строительства вполне может сработать «лампочкин» метод запрета, например, на холодный бетон и поощрения теплого пористого кирпича. Среди пяти главных принципов создания теплого и светлого дома числятся в основном те, что используются строителями с древнейших времен: хорошая теплоизоляция стен, крыши и фундамента, правильная ориентация окон по сторонам света и снижение теплопотерь через окна.

Работающий, эффективный закон об энергосбережении должен состоять из множества конструкций, которые вызовут интерес повышать энергоэффективность у сотни и тысячи рыночных субъектов. В российском законопроекте есть лишь их зачатки. Перечислим имеющиеся в законе стимулирующие меры.

Предприятие теперь сможет получить инвестиционный налоговый кредит (отсрочку уплаты налога на прибыль или регионального налога на период от одного года до пяти лет), если повысит энергетическую эффективность производства товаров, выполнения работ, оказания услуг.

В отношении объектов генерации представлены более строгие критерии. Создание объекта электрической или тепловой генерации с КПД более 57% или использующего возобновляемые источники энергии дает основание на налоговый кредит до 30% стоимости приобретаемого оборудования. В этот пока еще короткий перечень правительство России обязано внести другие объекты и технологии, имеющие высокую энергетическую эффективность.

Наше отставание в энергоэффективности означает, что мы должны, не теряя времени на поиск пути, использовать опыт других стран. В поддержку плана действий «группы восьми», куда входит и Россия, и по поручению лидеров стран «восьмерки» Международное энергетическое агентство (МЭА) подготовила специальный 586-страничный доклад «Перспективы энергетических технологий: сценарии и стратегии развития до 2050 года». МЭА уверено, что первостепенное значение для решения задач безопасной и экологически чистой энергетики, изменения климата и устойчивого развития имеет энергоэффективность. В своем докладе агентство привело множество требуемых для этого технологий, уже разработанных или близких к коммерциализации. Так, новые строения могут быть на 70% более эффективными по экономии энергии, новые системы освещения - на 30-60% более экономичными, тепловые потери через современные окна - в три раза меньше (все это в сравнении с типичными западными технологиями, а не типичными российскими).

Не утруждая себя более полной интеграцией, освоением международного опыта и более детальной проработкой соответствующих механизмов в российском законодательном поле, авторы законопроекта, видимо, понадеялись на действенность штрафов. Теперь за энергорасточительность уполномоченный орган сможет в массовом порядке налагать штрафы на граждан и организации.

По подсчетам некоторых аналитиков, 40% потребляемой в России энергии можно "высвободить" за счет простой экономии. Данный факт означает, что в нашей стране ежегодно тратится впустую, почти половина всей производимой энергии, и не зря нам присваивают статус, одной из самых энергорасточительных стран в мире. Количество впустую сожженной и потерянной энергии сравнимо с объемом всей экспортируемой из России нефти и нефтепродуктов. Каждый день, мы забываем или ленимся гасить свои осветительные приборы, а в масштабах всей страны это уже миллионы, если не миллиарды ламп.

Тем не менее, популярность использования энергосберегающих ламп в нашей стране набирает обороты, спрос на данный товар растет с каждым днем. Интерес к энергосберегающим светилам, вызван не только мировыми тенденциями к энергосбережению, но, и как показывает практика, это и в самом деле, очень практичное решение для освещения жилья.

Чем же отличаются энергосберегающие лампы, от традиционных ламп накаливания и является ли экономия электроэнергии единственной отличной характеристикой? Давайте попробуем разобраться в этих вопросах. Для начала рассмотрим, как устроена энергосберегающая лампа.

Энергосберегающая лампа состоит из 3 основных компонентов: цоколя, электронного блока, люминесцентной лампы.

Цоколь - предназначен для подключения лампы к осветительным прибором.

Электронный блок - (ЭПРА: электронный пускорегулирующий аппарат) обеспечивает запуск и дальнейшее поддержание процесса свечения люминесцентной лампы. Также Электронный блок преобразует поступающее напряжение 220В в напряжение, необходимое для работы люминесцентной лампы.

Люминесцентная лампа - собственно сама светящаяся часть лампы, наполнена инертным газом (аргоном) и парами ртути. Внутренние стенки лампы покрыты люминофорным покрытием.

Теперь ознакомимся с характеристиками энергосберегающих ламп.
Энергосберегающие лампы еще называют - Компактные Люминесцентные Лампы или сокращенно - КЛЛ.

Принцип работы у них аналогичен люминесцентным лампам: трубка в форме спирали или система дуговых трубок, наполненная инертным газом (аргоном или ксеноном) и парами ртути. Внутренние стенки лампы покрыты люминофором. Под действием высокого напряжения в лампе происходит движение электронов, они сталкиваются с атомами ртути, при этом образуется ультрафиолетовое излучение, которое, проходя сквозь люминофор, создает видимое нашему глазу свечение.

Исполнение ламп бывает различным, обычно их производят в виде трубок скрученных в спираль, но также компактные образцы, представлены в традиционных формах груши, свечи, шара или цилиндра. В последних образцах уже отсутствует электронный блок (ЭПРА), вернее он есть, просто инженеры умудрились всунуть его в цоколь.

Световой поток и мощность

Мощность указывается в ваттах, зачастую указан и эквивалент по мощности обычной лампочки, выдающей равное с энергосберегающей количества света. Например, если на энергосберегающей лампе написано 8W, то светить она будет как 40W лампочка накаливания. Ниже приведены среднестатистические значения мощности и соответствующего светового потока:
. 5W (25W) - 250 Lm;

  • 8W (40W) - 400 Lm;
  • 12W (60W) - 630 Lm;
  • 15W (75W) - 900 Lm;
  • 20W (100W) - 1200 Lm;
  • 24W (120W) - 1500 Lm;
  • 30W - 150W - 1900 Lm;

Температура света

Данный параметр будет не совсем правильно применять к люминесцентным лампам, так как он берётся из температуры нагретой нити в лампе накаливания, при этом температура измеряется в кельвинах (К). Температура нити накала традиционной лампочки равна 2700 К или 2427 С, при этом лампочка светит жёлтым светом.
Производители люминесцентных ламп придерживаются таких температурных диапазонов:

  • 2700 К - тёплый белый, соответствует свету от обычной лампочки накаливания;
  • 3300-3500 К - белый, не распространенный тип КЛЛ.
  • 4000-4200 К - холодный белый, лампа светит с слабым голубым оттенком. Мощность таких ламп рекомендуется выбирать больше, так как с такой температурой света маломощная лампа светит тускло.
  • 6000-6500К - дневной. Свечение ламп соответствует люминесцентным трубкам большой мощности.

Срок службы

Некоторые производители весьма не дешевых энергосберегающих ламп дают гарантии, на 12000-15000 часов работы их продукции. Лампы средней ценовой категории работают до 6000-10000 часов. Самый бюджетный вариант имеет срок службы 3000-4000 часов, что порой не соответствует действительности.

Коэффициент цветопередачи

Немаловажный коэффициент, чем он выше - тем лучше. Минимальное необходимое значение R=82. Если коэффициент ниже, чем 82, то создаётся эффект затуманенности, тени от такого света получаются не чёткие, оттенки предметов белого цвета - резкие с зелёноватыми или синими бликами. Глядя на лампочку с низким R, ловишь «зайчиков» в глазах, как от взгляда на сварку или на солнце.

Недостатки
К недостаткам можно отнести экологическую частоту, мы все прекрасно знаем что пары ртути - это яд, поэтому разбивать энергосберегающие лампы крайне не рекомендуется. Также нужно отметить, что бракованные компактные люминесцентные лампы - не редкость. Как правило, брак часто встречается в бюджетной категории товаров из-за не совершенства технологии производства, и большой процент дешёвых ламп умирает или начинает гореть тускло после первых 1000 часов работы.
Рекомендации
Для продления жизни энергосберегающих ламп, существуют определённые рекомендации по использованию, которые помогут продлить срок их службы. Как и для обычных ламп накаливания, на сроке жизни энергосберегающих сказываются частые включения и выключения, рекомендуется выключать лампочку не менее, чем после 5-10 минут работы.
Нельзя использовать энергосберегающие лампы с устройствами плавного старта или защитными блоками от скачков напряжения, которые используют с обычными лампами накаливания.

Также рекомендуется использовать энергосберегающие лампы с интегрированной системой плавного старта, так как такой вид включения продлит срок службы, на несколько тысяч часов. Первых пару минут лампа будет разогреваться, гореть не на полную мощность.
Экономия
Несмотря на изначально высокую цену, КЛЛ становиться более экономным и практичным решением. Произведем небольшой расчет перехода с обычных ламп накаливания на энергосберегающие:
Средний срок службы лампы накаливания около 1000 часов, аналогичной энергосберегающей - 6000 часов. Стоимость лампы накаливания - 15 рублей, энергосберегающей лампы - 120 рублей. Мощности ламп - 100 W и 20 W соответственно. Стоимость электроэнергии возьмём 2 рубля за 1 кВ/ч. За 6000 часов работы вам нужно 6 обычных ламп по 15 рублей, что равно 90 руб. За 6000 часов работы 6 лампочек по 100W сожгут 600 кВ/ч. энергии по 2 рубля, а это равно 1200 рублей. Итого получаем 90+1200=1290 рублей.

Энергосберегающая лампа стоит 120 руб. мощность составляет 20W, получается, что за 6000 часов работы она израсходует 120 кВ/ч на 240 рублей. Итого получаем 120+240=360 рублей.

Затраты получаются в 3,5 раза ниже. На практике этот показатель может быть как больше, так и меньше. А выводы делайте сами.

Пассивные дома

В Европе одним из основных трендов в развитии жилищного строительства становится создание пассивных домов. Основные их преимущества - минимальные затраты на отопление и здоровый микроклимат.

Пассивные дома - это достаточно новый стандарт для жилых строений. Благодаря утеплению и герметизации оболочки здания, затраты на отопление в нем ничтожно малы и нет нужды в привычных системах отопления. Тема пассивных домов так популярна сегодня в Германии и Австрии, что можно говорить о начале тихой домостроительной революции. За десятилетие там построено более 16 тыс. таких домов, причем в последние три-четыре года объемы растут экспоненциально. Требования к эффективности зданий в Германии постоянно ужесточаются, все чаще можно услышать, что через несколько лет пассивные дома могут стать обязательным общегерманским стандартом. Другие дома строить не будут вовсе.

В основе концепции пассивного дома очень простой эффект - автономное пространство, откуда не выходит тепло, можно отопить всего одной свечой. По аналогии: для дома-термоса, не имеющего тепловых потерь, даже в морозы будет достаточно тепла человека (в сутки человеческое тело выделяет 100 кВт тепловой энергии), солнечной энергии и энергии, выделяемой электроприборами.

В середине 1980-х годов германский инженер-физик Вольфанг Файст сделал математические расчеты дома-термоса, который не надо было бы обогревать. Главный результат расчетов в том, что такой пассивный дом оказался не математическим феноменом, а вполне реальной вещью. В частности, для эффективного утепления здания не нужны толстые кирпичные стены - достаточно слоя утеплителя менее полуметра.

Для проверки расчетов Файста в 1991 году в Дармштадте был построен первый пассивный дом. Детальное изучение подтвердило: здание действительно практически не потребляет тепла. Экспериментальный дом оказался всего на 25% дороже обычного здания, что вполне приемлемо для первого образца. В середине 1980-х независимо от Файста подобные расчеты сделал и российский физик Юрий Лапин. Однако отечественное градостроительное начальство посчитало, что такого не может быть в принципе, и идею даже проверять не стали.

Уже в первом пассивном здании доктора Файста были сформулированы пять основных принципов пассивного дома. Принцип первый - хорошая теплоизоляция всех частей здания. Для утепления стен, кровли и фундамента в климате центральной части Германии достаточно высокоэффективных утеплителей толщиной 30-40 сантиметров, что по тепловым свойствам эквивалентно кирпичной кладке толщиной шесть-восемь метров.

Второй - использование трех камерных стеклопакетов с низким показателем теплопередачи. Третий - особое внимание уделяется тонкой работе с так называемыми мостиками холода (стыки элементов, металлические части, углы здания), через которые тепло активно уходит. Например, металлические детали заменяются пластиковыми. Четвертый - проводится герметизация здания, и оно действительно становится термосом, не выпускающим воздух.

Правда, тут возникает проблема: люди дышат, а значит, необходима постоянная подача свежего воздуха. В советской практике предполагалось, что вентиляция помещений происходит естественно - через форточки и щели в окнах-дверях. Понятно, что для герметичного пассивного дома такой подход неприемлем, так как зимой здание будет терять тепло. Выход был найден в системе искусственной вентиляции с рекуператорами-теплообменниками. Это и есть пятый принцип возведения пассивного дома.

Свежий воздух подается в постройку по трубе, проходит через теплообменник, где забирает часть тепла у выходящего воздуха, имеющего комнатную температуру. В пассивных домах уровень рекуперации достигает 75%, а значит, выходящий воздух передает значительную часть энергии входящему. Зимой входящий воздух, если это необходимо, дополнительно подогревается. То есть система отопления в зданиях все-таки есть, но она воздушная и потребляющая мало энергии.

Результат: необходимость в отоплении пространства резко снижается. Критерием пассивного дома является потребление тепловой энергии - 15 кВт на один квадратный метр в год. Это в десять раз меньше, чем у рядовых германских зданий 1950-1980-х годов постройки и в 10-15 раз меньше, чем у советских домов, возведенных в 1970-х. Наконец, пассивные европейские дома потребляют в пять-семь раз меньше тепловой энергии, чем современные российские здания. Можно посчитать и по-другому: для отопления 30-метровой комнаты пассивного дома достаточно энергии 30 свечей.

В первом пассивном доме был еще один элемент, от которого впоследствии отказались. В нем попытались использовать энергию земли. Воздухозаборник ставился на некотором расстоянии от здания, и свежий воздух сначала шел по подземной трубе. Проходя под землей, где даже в сильные морозы температура остается плюсовой, воздух прогревался. Система работала, но после расчетов и экспериментов от данного элемента решили отказаться - слишком дорого.

Отказ этот весьма показателен. Суть пассивного дома в его экономичности. Немцы постоянно проверяли идеи на практике, различные способы экономии и производства энергии сравнивались по их цене за 1 кВт - в результате были приняты те принципы технологии «пассивный дом», которые дают максимальный финансовый эффект. Так, расчеты Института пассивных домов показали, что эффективнее вкладывать деньги в экономию энергии, чем в ее производство, что в Германии при строительстве дома с нуля выгоднее инвестировать средства в системы пассивного дома, чем, к примеру, в установку солнечных батарей.

Именно соображения экономии заставили немцев остановиться на базовом показателе затрат на отопление в 15 кВт на один метр в год. В принципе этот показатель можно снизить, но расчеты Института пассивных домов продемонстрировали, что именно при 15 кВт чисто математически достигается экстремум по показателю «эффект/затраты». Если пытаться снизить до нуля затраты на тепло, резко возрастают затраты на строительство и сложность системы.

Сегодня в мире строится немало экодомов, в том числе и довольно экзотических. В них применяются необычные материалы, солнечные батареи, ветряки и так далее. Есть стандарт домов так называемого нулевого потребления, когда здания полностью автономны, обеспечивают себя энергией. На фоне красивых картинок и ярких концептов пассивные дома могут показаться суховатыми. Но простота пассивных домов продуманная: из системы недрогнувшей рукой вычеркнуты все недостаточно практичные элементы. При этом система открытая, хозяин, естественно, может добавить в свой дом любой дополнительный элемент.

И именно этой эффективностью вызван успех пассивных домов на рынке. Если еще десять лет назад в год строились десятки таких зданий, то в последние три-пять лет, ежегодно возводятся уже тысячи домов. Львиная доля пассивных домов строится в Германии и Австрии. В Вене уже 20% новостроек возводится именно так. Начато строительство огромного муниципального района на 200 тыс. жилых «пассивных» единиц. В последние годы все больше пассивных домов появляется в Дании и Франции, созданы прототипы в Испании, Турции.

Для энергоэффективных домов разрабатываются специальные материалы: например, стекла с переменной управляемой прозрачностью и черепицу с фотоэлементами. Ведутся исследовательские проекты по адаптации системы "пассивный дом" для стран с различным климатом.

По пассивному дому можно безошибочно определять стороны света. На юг выходят большие панорамные окна. Окна на север намного меньше. Впрочем, использовать дом как компас можно только с учетом климата страны. Большие окна на юг отражают положение в Германии, где хочется зацепить больше солнечной энергии. Энергоэффективные дома в Южной Европе, наоборот, будут ориентироваться окнами на север, чтобы защититься от лишнего тепла.

Окна - это всегда предмет компромисса. С одной стороны, через них в комнаты попадает свет и солнечная энергия, а с другой - в них велики теплопотери, которые можно радикально снизить, только вставив очень дорогие стеклопакеты. В каждом случае размер окон и их параметры по тепло- и светопередаче рассчитывают архитекторы исходя из бюджета стройки.

В целом по архитектуре пассивные дома практически не отличаются от обычных, все интересное внутри. В таком доме имеется отдельная комната для инженерного оборудования, обычно в подвале. Множество труб с воздухом и водой запаковано либо в резиновые кожухи, либо в изоляцию с фольгой - немцы решительно борются с теплопотерями. В угол ставится рекуператор размером чуть больше холодильника. В трубу с входящим воздухом монтируются места для нескольких фильтров - как в автомобиле. Фильтры периодически меняются, что гарантирует чистый воздух в доме.

В каждом пассивном доме на стене висит небольшая коробочка - пульт управления климатом. Чаще всего там два регулятора: первый задает температуру, второй регулирует скорость подачи чистого воздуха. Так что на коробочке несколько положений типа «один дома» (не менее 300л воздуха в час), «вдвоем», «вечеринка».

По себестоимости пассивный дом несколько дороже обычного. В таком доме нет котла и системы отопления - это удешевляющий момент; зато есть расходы на дополнительное утепление, герметизацию, рекуперацию и так далее. Однако, 20 лет развития технологии не прошли даром: стоимость пассивного дома резко снизилась. Если первый пассивный дом доктора Файста был дороже обычного здания на 25%, то сегодня превышение - всего 5-10%. Впрочем, ожидать дальнейшего радикального снижения себестоимости вряд ли стоит. Немецкие архитекторы пассивных домов бьются за доли процента, экономя на длине труб или разыгрывая правильную ориентацию здания по сторонам света.

Дополнительные вложения в систему «пассивный дом» окупаются в среднем через семь-десять лет за счет пониженных платежей за тепло.

Выводы. Увеличивающееся загрязнение окружающей среды, нарушение теплового баланса атмосферы постепенно приводят к глобальным изменениям климата. Дефицит энергии и ограниченность топливных ресурсов с всё нарастающей остротой показывают неизбежность перехода к использованию нетрадиционных, альтернативных источников энергии. Они экологичны и возобновляемы, основой их служит энергия Солнца и Земли, воды и воздуха.

Неоспорима роль энергии в поддержании и дальней-шем развитии цивилизации. Сегодня активно проводятся исследования всех возможных восстанавливаемых источников энергии. В некоторых случаях результаты даже выглядят весьма оптимистично и позволяют надеяться на определенные

Изменения.

Энергия - не только одно из чаще всего обсуждаемых сегодня понятий; помимо своего основного физического содержания, оно имеет многочисленные экономические, технические, политические и иные аспекты.
Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных видов природного топлива (нефти, угля, газа и др.) исчерпаемы. Конечны также и запасы ядерного топлива - урана и тория.

Остаются два пути: строгая экономия при расходовании энергоресурсов и использование нетрадиционных возобновляемых источников энергии.

Список литературы

  1. Баланчевадзе В. И., Барановский А. И. Под ред. А. Ф. Дьякова. Энергетика сегодня и завтра. - М.: Энергоатомиздат, 1990.
  2. Бернер М., Рябов Е. Замени лампочку - помоги Родине // Эксперт, 21-31 декабря 2009. - №49-50.
  3. Информация об энергосбережении и повышении энергетической эффективности: проблемы, пути решения, передовой опыт // Энергосбережение и водоподготовка, 2010. - №1(63).
  4. Кириллин В. А. Энергетика. Главные проблемы: в вопросах и ответах. - М.: Знание, 1990.
  5. Нетрадиционные источники энергии. - М.: Знание, 1982.
  6. Щукин А. Энергия свечей, человека и земли // Эксперт, 5-11 октября 2009. - №38.
  7. Энергетические ресурсы мира. Под ред. П.С.Непорожнего, В.И. Попкова. - М.: Энергоатомиздат, 1995.
  8. http://www.energy-source.ru/
  9. http://www.energija.ru/
  10. http://solar-battery.narod.ru/
  11. http://dom-en.ru/

Вам также будет интересно:

Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....
Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос
22.11.2019 Желанными друзьями девушек являются бриллианты. Однако, без роскошных, богатых...
Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды
При выборе одежды мужчине в первую очередь нужно определиться со стилем, чтобы составлять...