Спорт. Здоровье. Питание. Тренажерный зал. Для стиля

Бразильское кератиновое выпрямление волос Brazilian blowout Польза бразильского выпрямления волос

Как подобрать свой стиль одежды для мужчин: дельные советы экспертов Современный мужской стиль одежды

Какого числа день бухгалтера в России: правила и традиции неофициального праздника

Как заинтересовать девушку по переписке – психология

Рыбки для пилинга Рыбки которые чистят ноги в домашних условиях

Поделки своими руками: Ваза из листьев Вазочка из осенних листьев и клея

Определение беременности в медицинском учреждении

Как разлюбить человека: советы психолога

Вечерние платья для полных женщин – самые красивые для праздника

Как снимать шеллак в домашних условиях

Развитие детей до года: когда ребенок начнет смеяться

Размерная сетка обуви Nike Таблица размеров спортивной обуви

Поделка медведь: мастер-класс изготовления медвежат из различных материалов (95 фото-идей) Как сделать мишку из картона

Маленькие манипуляторы: советы родителям, которые идут на поводу у ребенка Ребенок манипулятор психология

Проявление туберкулеза при беременности и способы лечения

Солнечная энергия использование в мире. Использование солнечной энергии в России. В Ульяновской области построят завод по производству солнечных панелей

Энергия солнца используется в качестве источника как электрической, так и тепловой энергии. Она экологически чиста, и в процессе ее преобразования не образуется вредных выбросов. Этот относительно новый способ производства электроэнергии получил бурное развитие в середине 2000-х годов, когда страны ЕС стали внедрять политику снижения зависимости от углеводородов в сфере производства электроэнергии. Еще одной целью было снижение выбросов в атмосферу парниковых газов. Именно в эти годы стоимость производства солнечных панелей стала снижаться, а их эффективность – возрастать.

Наиболее благоприятствуют, по длительности светового дня и поступлению солнечных лучей в течение года, тропические и субтропические климатические пояса. В умеренных широтах наиболее благоприятен летний сезон, а что касается экваториальной зоны, то в ней отрицательным фактором является облачность в середине светового дня.

Может осуществляться посредством промежуточного теплового процесса или напрямую - посредством . Фотоэлектрические станции подают электроэнергию прямо в сеть, либо служат источником автономного электроснабжения потребителя. Тепловые же солнечные станции главным образом применяются для получения тепловой энергии путем обогрева различных теплоносителей, таких как вода и воздух.


По состоянию на 2011 год, на всех солнечных электростанциях мира было произведено 61,2 млрд. киловатт-часов электроэнергии, что соответствует 0,28% общего мирового объема произведенной электроэнергии. Этот объем сравним с половиной показателя генерации электроэнергии на ГЭС в России. Главным образом мощности фотоэлектрических станций в мире сосредоточены в небольшом количестве стран: в 2012 году 7 стран-лидеров обладали 80% суммарных мощностей. Самое стремительное развитие отрасль получила в Европе, где было сосредоточено 68% мировых установленных мощностей. На первом месте Германия, на которую приходится (2012 год) около 33% мировых мощностей, далее идут Италия, Испания и Франция.

В 2012 году установленная мощность солнечных фотоэлектрических станций во всем мире составила 100,1 ГВт, что меньше 2% суммарного показателя по мировой электроэнергетике. В период с 2007 по 2012 годы этот объем вырос в 10 раз.


В Китае, США и Японии располагались мощности солнечной энергетики по 7-10 ГВт. В течение нескольких последних лет особенно быстро солнечная энергетика развивается в Китае, где общая мощность фотоэлектрических станций страны выросла в 10 раз за 2 года - от 0,8 ГВт в 2010 году до 8,3 ГВт в 2012 году. Сейчас на Японию и Китай приходится 50% мирового рынка солнечной энергетики. Намерения Китая - получить в 2015 году 35 ГВт электроэнергии от солнечных установок. Это вызвано все растущими потребностями в энергии, а также необходимостью борьбы за чистоту экологии, которая страдает от сжигания ископаемого топлива.

По прогнозам Японской Ассоциации фотоэлектрической энергии, к 2030 году суммарная мощность солнечных станций Японии достигнет 100 ГВт.

В планах Индии – увеличение, в среднесрочной перспективе, мощности солнечных установок в 10 раз, то есть от 2 ГВт до 20 ГВт. Стоимость солнечной энергии в Индии уже достигла уровня 100 долларов за 1 Мегаватт, что сравнимо с энергией, получаемой в стране из импортного угля или газа.

Лишь 30 процентов территории Африки, расположенной к югу от Сахары, имеют доступ к . Там развиваются автономные солнечные установки и микро-сети. Африка, как регион с мощной добывающей промышленностью, таким путем рассчитывает получить альтернативу дизельным электростанциям, а также надежный резервный источник для ненадежных электросетей.


В России сейчас идет период становления солнечной энергетики. Первая фотоэлектрическая станция мощностью 100 кВт, расположенная на территории Белгородской области, была запущена в 2010 году. Солнечные поликристаллические панели для нее закупались на Рязанском заводе металлокерамических приборов. В Республике Алтай с 2014 года началось строительство солнечной электростанции мощностью 5МВт. Рассматриваются и другие возможные проекты в этой сфере, в том числе в Приморском и Ставропольском краях, а также в Челябинской области.

Что касается солнечной тепловой энергетики, то по данным Renewable Energy Policy Network for the 21st Century, в 2012 году ее мировые установленные мощности составляли 255 ГВт. Большая часть этих тепловых мощностей приходится на Китай. В структуре таких мощностей основную роль играют станции, нацеленные непосредственно на обогрев воды и воздуха.

Солнце – это природный огромный источник энергии. Внутри этого газового шара ежеминутно протекают сотни различных процессов. Без Солнца невозможна жизнь на Земле, так как оно является источником энергии для всех живых организмов. Все земные природные процессы осуществляются благодаря солнечной энергии. Циркуляция атмосферы, круговорот воды, фотосинтез, теплорегуляция на планете – все это было бы невозможным без Солнца. Использование солнечной энергии на Земле такое же привычное явление, как вдох и выдох для человека. Но оно может дать человечеству еще больше. Его успешно можно использовать для получения промышленной энергии, тепловой или электрической.

Потенциал, которым обладает солнечная энергетика

Разработки по использованию солнечной энергии начались в еще в 20 веке. С тех проведено сотни исследований учеными со всех уголков мира. Ими было доказано, что эффективность использования солнечной энергии может быть очень и очень высокой. Данный источник может обеспечить энергоснабжение на всей планете гораздо лучше, чем все существующие на сегодняшний день ресурсы в совокупности. При этом такой вид энергии является общедоступным и бесплатным.

Использование энергии солнечного света

Запасы природных ископаемых, способных обеспечить энергоснабжение на Земле, сокращаются с каждым днем. Поэтому в настоящее время ведутся активные разработки различных способов использования солнечной энергии. Данный ресурс является отличной альтернативой традиционным источникам. Поэтому исследования в этой сфере невероятно важны для общества.

Достижения, которые существуют на данный момент, дали возможность создать системы использования солнечной энергии, которые делаться на два типа:

  • Активные (фотоэлектрические системы, солнечные электростанции и коллекторы).
  • Пассивные (подбор стройматериалов и проектировка помещений для максимального применения энергии солнечного света).

Преобразование и использование солнечной энергии таким образом дало возможность применять неиссякаемый ресурс с высокой продуктивностью и окупаемостью.

Принцип работы пассивных систем

Существует несколько видов пассивного использования солнечной энергии. Большинство из них невероятно просты в применении, но при этом достаточно эффективны. Также существуют и более замысловатые варианты, которые помогают получать больше выгоды. Например:

  • Первое, что приходит на ум, это емкость, в которой хранится вода. Если покрасить ее в темный оттенок, то таким нехитрым образом солнечная энергия будет преобразовываться в тепловую, и вода будет нагреваться.
  • Следующий вариант не под силу выполнить обычному человеку самостоятельно, так как он требует скрупулезного анализа специалиста. Данная технология должна приниматься во внимание еще на этапе проектирования и строительства дома. Основываясь на климатических условиях, здание проектируется таким образом, что само работает как солнечный коллектор. После чего подбираются необходимые материалы, способствующие максимальной аккумуляции энергии солнечных лучей.

Благодаря таким методам становится возможным использование солнечной энергии для отопления и освещения помещений. Также подобные разработки способствуют энергосбережению. Так как подобное проектирование способно не только преобразовывать солнечную энергию, но и сохранять тепло внутри здания, что также позволяет значительно сократить расходы.

Способы активного использования солнечной энергии

Основой данного принципа энергоснабжения являются коллекторы. Такое оборудование поглощает энергию и перерабатывает ее в тепло, с помощью которого можно отапливать дом или подогревать воду, а также преобразовывает солнечную энергию в электрическую. Коллекторы широко применяются как в промышленном объеме, так и на частных участках и сельском хозяйстве.

Помимо коллекторов еще одним оснащением активной системы можно назвать панели с фотоэлементами. Данное устройство позволяет использовать солнечную энергию в быту и в промышленных масштабах. Такие панели очень просты, неприхотливы в обслуживании и долговечны.

Также способом активного применения энергии Солнца являются солнечные электростанции. Они подходят только для масштабного преобразования радиации в тепловую ил электроэнергию. За последние годы они значительно набрали популярность в мире и разработки в этой сфере позволяют расширять возможности и количество таких станций.

Говоря о том, что солнечная энергия помогает экономить на применении традиционных ресурсов, стоит заметить, что подобное преимущество станет действительно полезным людям, обладающим своими частными участками. Собственный дом дает возможность установить оборудование для преобразования энергии, которое сможет удовлетворять, даже если и не полностью, хотя бы часть энергетических потребностей. Это поможет значительно снизить потребление централизованного энергоснабжения и уменьшить расходы.

Солнечная энергия – это отличный источник для таких процессов:

  • Пассивный обогрев и охлаждение дома.

Не следует забывать о том, что Солнце и так греет все, что существует на Земле, и ваш дом не исключение. Поэтому можно усилить благотворное воздействие, внеся на этапе строительства определенные поправки, и использовав специальные техники. Таким образом, вы получите дом с гораздо более комфортной теплорегуляцией без особых вложений.

  • Нагрев воды с помощью солнечной энергии.

Применение энергии солнечных лучей для подогрева воды – это самый простой и дешевый способ, доступный человеку. Подобное оснащение можно купить по адекватным ценам. При этом они смогут окупить себя достаточно быстро, ощутимо снизив расходы на централизованное энергоснабжение.

  • Освещение улиц.

Это самый простой и дешевый способ использования солнечной энергии. Специальные устройства, которые поглощают за день солнечную радиацию, а в темное время суток освещают участки, очень популярны среди владельцев частных домов и сейчас.

Солнечная панель, к сожалению, не отличается всеобщей доступностью. Ее стоимость достаточно высока, но при этом, это удобный и выгодный энергетический ресурс, который успешно можно применять в российских широтах. Но если ваше финансовое положение не позволяет осуществить такую дорогостоящую покупку, вы сможете создать подобные панели самостоятельно.

Как это сделать?

  • Первым делом вам будут нужны солнечные фотоэлементы. В среднем для одной панели их понадобится около 36 штук. Лучше выбирать элементы на монокристаллах, так как у них выше коэффициент полезного действия, и срок эксплуатации дольше.
  • Сама панель производится из фанерного листа. Из него вырезается днище, размер которого вы определяете, смотря на количество фотоэлементов. Далее панель помещается в рамку из брусков.
  • После чего требуется изготовить подложку, на которую будут накладываться фотоэлементы. Это можно сделать из ДВП.
  • Далее вам необходимо сделать отверстия. Обязательно проследите, чтобы они были симметричны.
  • Далее проводится процедура окрашивания и сушки, которая повторяется два раза.
  • После того, как подложка высохнет, на нее выкладываются элементы, и производится распайка. Важный момент – выкладывайте их вверх ногами.
  • В конечном этапе фотоэлементы выкладывают рядами, а потом уже соединяют все в комплексы. Все это по итогу крепится с помощью силикона.

Вот таким несложным способом вы можете создать своими руками оборудование, позволяющее использовать солнечную энергию в быту. Немного усилий и терпения, и у вас все получится.

Использование солнечной энергии в России

На каком этапе развития сейчас находится альтернативная энергетика в России? К сожалению, в нынешнее время это происходит на очень низком уровне. Пока страна не воплощает весь существующий потенциал в жизнь. На это имеет достаточно сильное влияние такой аспект, как наличие больших запасов полезных ископаемых, которые используются для традиционного энергоснабжения.

Тем не менее, успешное использование солнечной энергии в России возможно. Благодаря огромной площади, включающей в себя разные климатические зоны и рельеф, страна имеет возможность активно развивать выработку альтернативной энергии. При грамотном и всестороннем подходе можно обеспечивать весомый процент общего энергоснабжения именно с помощью энергии Солнца.

Использование энергии Солнца на Земле краткий доклад, расскажет Вам о возможностях ее применения с пользой для человека.

Использование Солнечной энергии на Земле

Солнце представляет собой светящийся огромный газовый шар, в котором протекают достаточно сложные процессы и постоянно выделяется энергия. Благодаря ей существует жизнь на нашей планете: нагревается атмосфера и поверхность планеты, дуют ветра, нагреваются океаны и моря, произрастают растения и так далее.

Солнечная энергия способствует образованию ископаемым видам топлива, преобразовывается в теплоту и холод, электричество и движущую силу. Светило испаряет воду, влагу превращает в водные капли, образует туманы и облака. Одним словом, энергия Солнца создает гигантский круговорот влаги на планете, систему воздушного и водяного отопления планеты.

Когда солнечный свет попадает на растения, то вызывает у них процесс фотосинтеза, рост и развитие. Прогревая почву, он формирует ее климат, давая жизненную силу микроорганизмам, семенам растений и все существам, которые населяют почву. Без солнечной энергии живые организмы были бы в состоянии спячки (анабиоза).

Примеры использования солнечной энергии в народном хозяйстве

Солнечная энергия — это восстанавливаемый естественным путем источник энергии и, что важно, экологически безопасный. Ученые со всего мира работают над расширением возможности ее использования. Во многих странах созданы государственные программы для разработки технологий применения солнечной энергии.

Наибольшее потребление солнечной энергии наблюдается в Турции и Израиле. А рекордное число оборудованных домов системой солнечного нагрева воды находится на Кипре.

В сельскохозяйственной деятельности, а именно в агропромышленном комплексе, также применяется солнечная энергия. Планируется внедрить ее во все отрасли народного хозяйства. Свободные площади стен и крыш домов, хозяйственных построек позволяют накапливать достаточные количества электроэнергии, причем бесплатной. Фотоэлектрические системы можно применять для работы электропастуха на выпасах, насосов, электроножей, медогонок на пасеке, для обеспечения жилых зданий электричеством.

Воздушные коллекторы, работающие на солнечной энергии, создают среду для проживания людей и сельскохозяйственных животных, а также поддерживают показатели влажности и температуры на одном, заданном уровне.

Теплицы и парники, оборудованные гелиопанелями, накапливают и сохраняют тепло, обеспечивая микроклимат для растений.

Устройства на основе солнечной энергии применяются для проветривания и отопления овоще- и зернохранилищ, поддерживая заданные параметры человеком.

Надеемся, что «Использование энергии Солнца» реферат помог Вам подготовиться к занятию. А свое сообщение о солнечной энергии Вы можете оставить через форму комментариев ниже.

Без энергии невозможна жизнь на планете. Физический закон сохранения энергии говорит о том, энергия не может возникнуть из ничего и не исчезает бесследно. Она может быть получена из природных ресурсов, таких как уголь, природный газ или уран, и превращена в удобные для нас формы, например, в тепло или свет. В окружающем нас мире можем находить различные формы накопления энергии, но важнейшим для человека является энергия, которую дают солнечные лучи- солнечная энергия.

Солнечная энергия относится к восстанавливаемым источникам энергии, то есть восстанавливается без участия человека, естественным путем. Это один из экологически безопасных энергетических источников, который не загрязняет окружающую среду. Возможности применения солнечной энергии практически неограниченны и ученые всего мира работают над разработкой систем, которые расширяют возможности использования солнечной энергии .

Один квадратный метр Солнца излучает 62 900 кВт энергии. Это примерно соответствует мощности работы 1 миллиона электрических ламп. Впечатляет такая цифра — Солнце дает Земле ежесекундно 80 тысяч миллиардов кВт, т.е в несколько раз больше, чем все электростанции мира. Перед современной наукой стоит задача — научиться наиболее полно и эффективно использовать энергию Солнца, как наиболее безопасную. Ученые считают, что повсеместное использование солнечной энергии — это будущее человечества.

Мировые запасы открытых месторождений угля и газа, при таких темпах их использования, как сегодня, должны истощиться в ближайшие 100 лет. Подсчитано, что в еще не разведанных месторождениях запасов горючих ископаемых хватило бы на 2-3 столетия. Но при этом наши потомки были бы лишены этих энергоносителей, а продукты их сгорания нанесли бы колоссальный ущерб окружающей среде.

Огромный потенциал имеет атомная энергия. Однако, Чернобыльская авария в апреле 1986 года показала, какие серьезные последствия может повлечь использование ядерной энергии. Общественность всего мира признала, что использование атомной энергии в мирных целях экономически оправдано, но следует соблюдать строжайшие меры безопасности при ее использовании.

Следовательно, наиболее чистый, безопасный источник энергии — Солнце!

Солнечная энергия может быть преобразована в полезную энергию посредством использования активных и пассивных солнечных энергетических систем.

Пассивные системы использования солнечной энергии.

Самый примитивный способ пассивного использования солнечной энергии — это окрашенная в темный цвет емкость для воды. Темный цвет, аккумулируя солнечную энергию , превращает ее в тепловую — вода нагревается.

Однако, есть более прогрессивные методы пассивного использования солнечной энергии . Разработаны строительные технологии, которые при проектировании зданий, учета климатических условий, подбора строительных материалов максимально используют солнечную энергию для обогрева или охлаждения, освещения зданий. При таком проектировании сама конструкция здания является коллектором, аккумулирующей солнечную энергию .

Так, в 100г н.э Плиний Младший построил небольшой дом на севере Италии. В одной из комнат окна сделаны из слюды. Оказалось, что эта комната теплее других и на ее обогрев требовалось меньше дров. В этом случае слюда являлась как изолятор, задерживающий тепло.

Современные строительные конструкции учитывают географическое положение зданий. Так, большое количество окон, выходящие на южную сторону, предусматривают в северных регионах, чтобы поступало больше солнечного света и тепла, и ограничивают количество окон с восточной и западной стороны, чтобы ограничить поступление солнечного света летом. В таких зданиях ориентация окон и расположение, тепловая нагрузка и теплоизоляция — единая конструкторская система при проектировании.

Такие здания экологически чистые, энергетически независимые и комфортные. В помещениях много естественного света, более полно ощущается связь с природой, к тому же существенно экономится электроэнергия. Тепло в таких зданиях сохраняется благодаря подобранным теплоизоляционным материалам стен, потолков, полов. Такие первое «солнечные» здания приобрели огромную популярность в Америке после Второй мировой войны. Впоследствии, из-за снижения цен на нефть, интерес к проектировке таких зданий несколько угас. Однако, сейчас, в связи с глобальным экологическим кризисом, наблюдается рост внимания к экологическим проектам с возобновляющимся энергетическим системам возросла вновь.

Активные системы использования солнечной энергии

В основе активных систем использования солнечной энергии применяются солнечные коллекторы. Коллектор, поглощая солнечную энергию , преобразует ее в тепло, которое через теплоноситель обогревает здания, нагревает воду, может преобразовать его в электрическую энергию и т.д. Солнечные коллекторы могут применятся во всех процессах в промышленности, сельском хозяйстве, бытовых нуждах, где используется тепло.

Виды коллекторов

воздушный солнечный коллектор

Это простейший вид солнечных коллекторов. Его конструкция предельно проста и напоминает эффект обычной теплицы, которая есть на любом дачном участке. Проведите небольшой эксперимент. В зимний солнечный день положите на подоконник любой предмет так, чтобы на него падали солнечные лучи и через некоторое время положите на него ладонь. Вы почувствуете, что этот предмет стал теплым. А за окном может быть — 20! Вот на этом принципе и основана работа солнечного воздушного коллектора.

Основной элемент коллектора — теплоизолированная пластина, сделанная из любого материала, который хорошо проводит тепло. Пластина окрашена в темный цвет. Солнечные лучи проходят через прозрачную поверхность, нагревают пластину, а потом потоком воздуха передают тепло в помещение. Воздух проходит благодаря естественной конвенции или при помощи вентилятора, что улучшает теплопередачу.

Однако, недостаток работы этой системы в том, что требуются дополнительные расходы на работу вентилятора. Эти коллекторы работают в течении светового дня, поэтому не могут заменить основной источник отопления. Однако, если вмонтировать коллектор в основной источник отопления или вентиляции, его КПД несоизмеримо возрастает. Солнечные воздушные коллекторы могут использоваться и для опреснения морской воды, что снижает ее себестоимость до 40 евроцентов за куб м.

Солнечные коллекторы могут быть плоскими и вакуумными.

плоский солнечный коллектор

Коллектор состоит из элемента, поглощающего солнечную энергию, покрытия (стекло с пониженным содержанием металла) , трубопровода и термоизолирующего слоя. Прозрачное покрытие защищает корпус от неблагоприятных климатических условий. Внутри корпуса панель поглотителя солнечной энергии (абсорбера) соединена с теплоносителем, который циркулирует по трубам. Трубопровод может быть как в виде решетки, так и в виде серпантина. Теплоноситель движется по ним от входных до выходных патрубков, постепенно нагреваясь. Панель поглотителя изготавливается из металла, хорошо проводящему тепло (алюминий, медь).

Коллектор улавливает тепло, превращая его в тепловую энергию. Такие коллекторы можно вмонтировать в крышу или расположить на крыше здания, а можно расположить их отдельно. Это придаст дизайну участка современный вид.

Вакуумный солнечный коллектор

Вакуумные коллекторы могут использоваться круглый год. Основным элементом коллекторов являются вакуумные трубки. Каждая из них состоит из двух стеклянных труб. Трубы изготавливают из боросиликатного стекла, причем внутренняя покрыта специальным покрытием, которое обеспечивает поглощение тепла с минимальным отражением. Из пространства между трубками выкачан воздух,. Для поддержания вакуума используется бариевый газопоглотитель. В исправном состоянии вакуумная трубка имеет серебристый цвет. Если она выглядит белой, то это значит, что вакуум исчез и трубку надо заменить.

Вакуумный коллектор состоит из комплекса вакуумных трубок (10-30) и осуществляет передачу тепла в накопительный резервуар через незамерзающую жидкость (теплоноситель). КПД вакуумных коллекторов высок:

— при облачной погоде, т.к. вакуумные трубки могут поглощать энергию инфракрасных лучей, которые проходят через облака

— могут работать при минусовых температурах.

Солнечные батареи.

Солнечная батарея — это набор модулей, воспринимающих и преобразующих солнечную энергию, в том числе и тепловых. Но этот термин традиционно закрепился за фитоэлектрическими преобразователями. Поэтому, говоря «солнечная батарея» подразумеваем фитоэлектрическое устройство, преобразующее солнечную энергию в электрическую.

Солнечные батареи способны генерировать электрическую энергию постоянно или аккумулировать ее для дальнейшего использования. Впервые фотоэлектрические батареи были применены в на космических спутниках.

Достоинство солнечных батарей — максимальная простота конструкции, простой монтаж, минимальные требования к облуживанию, большой срок эксплуатации. При установке не требуют дополнительного места. Единственное условие — не затенять их в течении длительного времени и удалять пыль с рабочей поверхности. Современные солнечные батареи способны сохранять работоспособность в течении десятилетий! Трудно найти систему настолько безопасную, эффективную и с таким длительным сроком действия! Они вырабатывают энергию в течении всего светового дня, даже в пасмурную погоду.

Солнечные батареи имеют свои недостатки в применении:

— чувствительность к загрязнениям. (Если расположить батарею под углом 45 градусов, то она будет очищена дождями или снегом, тем самым не потребуется дополнительного обслуживания)

— чувствительность к высокой температуре. (Да, при нагреве до 100 — 125 градусов солнечная батарея может даже отключиться и может потребоваться система охлаждения. Вентиляционная систстема при этом затратит малую долю вырабатываемой батареей энергии. В современных конструкциях солнечных батарей предусмотрена система оттока горячего воздуха.)

— высокая цена. (Принимая во внимание длительный срок службы солнечных батарей, то она не только окупит затраты на ее приобретение, но и сэкономит средства при потреблении электроэнергии, сэкономит тонны традиционных видов топлива при том экологически безопасна)

Использование солнечных энергетических систем в строительстве.

В современной архитектуре все чаще планируют строить дома с встроенными аккумуляторными источниками солнечной энергии. Солнечные батареи устанавливают на крышах зданий или на специальных опорах. Эти здания используют тихий, надежный и безопасный источник энергии — Солнце. Солнечная энергия используется для освещения, отопления помещений, охлаждения воздуха, вентиляции, производства электроэнергии.

Представляем несколько инновационных архитектурных проектов с использованием солнечных систем.

Фасад этого здания сконструирован из стекла, железа, алюминия с встроенными аккумуляторами солнечной энергии. Производимой энергии достаточно, чтобы не только обеспечить жителей дома автономным горячим водоснабжением и электричеством, но и освещать улицу 2,5 км в течении года.

Этот дом спроектировала группа американских студентов. Проект был представлен на конкурс «Проектирование, строительство домов и эксплуатация солнечных батарей». Условия конкурса: представить архитектурный проект жилого дома при его экономической эффективности, энергосбережении и привлекательности. Авторы проекта доказали, что их проект доступен, привлекателен для потребителя, сочетает превосходный дизайн и максимальную эффективность. (перевод с сайта www.solardecathlon.gov)

Использование систем солнечной энергии в мире.

Системы использования солнечной энергии совершенны и экологически безопасны. Во всем мире на них огромный спрос. Во всем мире люди начинают отказываются от использования традиционных видов топлива из-за роста цен на газ и нефть. Так, в Германии в 2004г. 47% домов имели солнечные коллекторы для нагрева воды.

Во многих странах мира разработаны государственные программы развития использования солнечной энергии . В Германии это программа «100 000 солнечных крыш», в США аналогичная программа «Миллион солнечных крыш». В 1996г. архитекторы Германии, Австрии, Великобритании, Греции и др. стран разработали Европейскую хартию о солнечной энергии в строительстве и архитектуре. В Азии лидирует Китай, где на основе современных технологий внедряются системы солнечных коллекторов в строительство зданий и использование солнечной энергии в промышленности.

Факт, который говорит о многом: одним из условий вступления в Евросоюз является рост доли альтернативных источников в энергосистеме страны. В 2000г. в мире работало 60 млн кв км солнечных коллекторов, к 2010г из площадь возросла до 300 млн кв км.

Эксперты отмечают, рынок систем солнечной энергии на территории России, Украины и Белоруссии только формируется. Солнечные системы никогда не производились в больших масштабах, потому что сырьевые ресурсы были настолько дешевы, что дорогостоящее оборудование гелиосистем было не востребовано… Выпуск коллекторов, в России, например, почти полностью прекращен.

В связи с подорожанием традиционных энергоносителей, наметилось оживление интереса с применению солнечных систем. В ряде регионов этих стран, испытывающих дефицит энергоресурсов, принимаются локальные программы по использованию гелиосистем, но широкому потребительскому рынку солнечные системы практически не знакомы.

Главная причина медленного развития рынка продажи и использования солнечных систем является, во-первых, их высокая начальная стоимость, во-вторых, недостаток информации о возможностях солнечных систем, передовых технологиях их использования, о разработчиках и изготовителях гелиосистем. Все это не может дать возможности правильно оценить эффективность применения систем, работающих на солнечной энергии .

Надо иметь в виду, что солнечный коллектор — не конечная продукция. Для получения конечной продукции — тепла, электроэнергии, горячей воды — надо пройти путь от проектирования, монтажа до пуска гелиосистем. Небольшой имеющийся опыт использования солнечных коллекторов показывает, что эта работа не сложнее монтажа традиционного отопления, но экономическая эффективность значительно выше.

В Белоруссии, России, на Украине есть множество фирм, занимающиеся проектировкой и монтажом оборудования отопления, но приоритет имеют сегодня традиционные энергоносители. Развитие экономических процессов, мировой опыт использования систем солнечной энергии показывает, что будущее за альтернативными источниками энергии. На ближайшее будущее можно отметить, что гелиосистемы являются новой, практически не занятой позицией нашего рынка.

Принцип преобразования солнечной энергии, её применение и перспективы

В мире всё меньше традиционных источников энергии. Запасы нефти, газа, угля истощаются и всё идёт к тому, что рано или поздно они закончатся. Если к этому времени не найти альтернативных источников энергии, то человечество ждёт катастрофа. Поэтому во всех развитых странах ведутся исследования по открытию и разработке новых источников энергии. В первую очередь – это солнечная энергия. С древних времён эта энергию использовалась людьми для освещения жилища, сушки продуктов, одежды и т. п. Солнечная энергетика сегодня является одним из наиболее перспективных источников альтернативной энергии. В настоящее время уже есть достаточно много конструкций, позволяющих преобразовывать энергию солнца в электрическую или тепловую. Отрасль постепенно растёт и развивается, но, как и везде, есть свои проблемы. Обо всём этом речь пойдёт в настоящем материале.

Энергия солнца является одним из самых доступных возобновляемых источников на Земле. Использование солнечной энергии в народном хозяйстве положительно сказывается на состоянии окружающей среды, поскольку для её получения не требуется бурить скважины или разрабатывать шахты. К тому же, этот вид энергии свободный и не стоит ничего. Естественно, что требуются затраты на покупку и монтаж оборудования.

Проблема в том, что солнце – это прерывистый источник энергии. Так, что требуется накопление энергии и использование её в связке с другими энергетическими источниками. Основная проблема на сегодняшний день заключается в том, что современное оборудование имеет низкую эффективность преобразования энергии солнца в электрическую и тепловую. Поэтому все разработки направлены на то, чтобы увеличить КПД таких систем и снизить их стоимость.

Кстати, очень много ресурсов на планете представляют собой производные от солнечной энергии. К примеру, ветер, который является ещё одним возобновляемым источников, не дул бы без солнца. Испарение воды и накопление её в реках также происходит под действием солнца. А вода, как известно, используется гидроэнергетике. Биотоплива также не было бы без солнца. Поэтому, помимо прямого источника энергии, солнце влияет на другие сферы энергетики.

Солнце отправляет к поверхности нашей планеты радиацию. Из широкого спектра излучения поверхности Земли достигают 3 типа волн:

  • Световые. В спектре излучения их примерно 49 процентов;
  • Инфракрасные. Их доля также 49 процентов. Благодаря этим волнам наша планета нагревается;
  • Ультрафиолетовые. В спектре солнечного излучения их примерно 2 процента. Они невидимы для нашего глаза.

Экскурс в историю

Как развивалась солнечная энергетика до наших дней? Об использовании солнца в своей деятельности человек думал с древних времён. Всем известна легенда, согласно которой Архимед сжёг флот неприятеля у своего города Сиракузы. Он использовал для этого зажигательные зеркала. Несколько тысяч лет назад на Ближнем востоке дворцы правителей отапливали водой, которая нагревалась солнцем. В некоторых странах выпариваем морской воды на солнце получали соль. Учёные часто проводили опыты с нагревательными аппаратами, работающими от солнечной энергии.

Первые модели таких нагревателей были выпущены в XVII─XVII веках. В частности, исследователь Н. Соссюр представил свою версию водонагревателя. Он представляет собой ящик из дерева, накрытый стеклянной крышкой. Вода в этом устройстве подогревалась до 88 градусов Цельсия. В 1774 году А. Лавуазье использовал линзы для концентрации тепла от солнца. И также появились линзы, позволяющие локально расплавить чугун за несколько секунд.

Батареи, преобразующие энергию солнца в механическую, создали французские учёные. В конце XIX века исследователь О. Мушо разработал инсолятор, фокусирующий лучи с помощью линзы на паровом котле. Этот котёл использовался для работы печатной машины. В США в то время удалось создать агрегат, работающий от солнца, мощностью в 15 «лошадей».



Долгое время инсоляторы выпускались по схеме, использующей энергию солнца для превращения воды в пар. И преобразованная энергия использовалась для совершения какой-либо работы. Первое устройство, преобразующее солнечную энергию в электрическую, было создано в 1953 году в США. Оно стало прообразом современных солнечных батарей. Фотоэлектрический эффект, на котором основана их работа, был открыт ещё в 70-е годы XIX столетия.

В тридцатые годы прошлого столетия академик СССР А. Ф. Иоффе предложил использовать полупроводниковые фотоэлементы для преобразования энергии солнца. КПД батарей в то время был менее 1%. Прошло много лет до того, как были разработаны фотоэлементы, имеющие КПД на уровне 10─15 процентов. Затем американцы построили солнечные батареи современного типа.

Для получения большей мощности солнечных систем низкий КПД компенсируется увеличенной площадью фотоэлементов. Но это не выход, поскольку кремниевые полупроводники в фотоэлементах довольно дорогие. При увеличении КПД возрастает стоимость материалов. Это является главным препятствием для массового использования солнечных батарей. Но по мере истощения ресурсов их использование будет всё более выгодным. Кроме того, исследования по увеличению КПД фотоэлементов не прекращаются.

Стоит сказать, что батареи на основе полупроводников достаточно долговечны и не требуют квалификации для ухода за ними. Поэтому их чаще всего используют в быту. Есть также целые солнечные электростанции. Как правило, они создаются в странах с большим числом солнечных дней в году. Это Израиль, Саудовская Аравия, юг США, Индия, Испания. Сейчас есть и совсем фантастические проекты. Например, солнечные электростанции вне атмосферы. Там солнечный свет ещё не потерял энергию. То есть, излучение предлагается улавливать на орбите и затем переводить в микроволны. Затем в таком виде энергия будет отправляться на Землю.

Преобразование солнечной энергии

Прежде всего, стоит сказать о том, в чём можно выразить и оценить солнечную энергию.

Как можно оценить величину солнечной энергии?

Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.



Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов H2 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма H2 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.

Способы преобразования

Поскольку наука на сегодняшний день не имеет устройств, работающих на энергии солнца в чистом виде, её требуется преобразовать в другой тип. Для этого были созданы такие устройства, как солнечные батареи и коллектор. Батареи преобразуют солнечную энергию в электрическую. А коллектор вырабатывает тепловую энергию. Есть также модели, совмещающие эти два вида. Они называются гибридными.




Основные способы преобразования энергии солнца представлены ниже:
  • фотоэлектрический;
  • гелиотермальный;
  • термовоздушный;
  • солнечные аэростатные электростанции.

Первый способ самый распространённый. Здесь используются фотоэлектрические панели, которые под воздействием солнца вырабатывают электрическую энергию. В большинстве случаев их делают из кремния. Толщина таких панелей составляет десятые доли миллиметра. Такие панели объединяются в фотоэлектрические модули (батареи) и устанавливаются на солнце. Чаще всего их ставят на крышах домов. В принципе, ничто не мешает разместить их на земле. Нужно, только чтобы вокруг них не было крупных предметов, других зданий и деревьев, которые могут отбрасывать тень.

Кроме фотоэлементов, для получения электрической энергии применяются тонкопленочные или . Их преимуществом является малая толщина, а недостатком – сниженный КПД. Такие модели часто используются в портативных зарядках для различных гаджетов.

Термовоздушный способ преобразования подразумевает получение энергию потока воздуха. Этот поток направляется на турбогенератор. В аэростатных электростанциях под действием солнечной энергии в аэростатном баллоне генерируется водяной пар. Поверхность аэростата покрывается специальным покрытием, поглощающим солнечные лучи. Такие электростанции способны работать в пасмурную погоду и в тёмное время суток благодаря запасу пара в аэростате.

Гелиотремальная энергетика основана на нагреве поверхности энергоносителя в специальном коллекторе. Например, это может быть нагрев воды для системы отопления дома. В качестве теплоносителя может использоваться не только вода, но и воздух. Он может нагреваться в коллекторе и подаваться в систему вентиляции дома.

Все эти системы стоят достаточно дорого, но их освоение и совершенствование постепенно продолжается.

Преимущества и недостатки солнечной энергии

Преимущества

  • Бесплатно. Одно из главных преимуществ энергии солнца – это отсутствие платы за неё. Солнечные панели делаются с использованием кремния, запасов которого достаточно много;
  • Нет побочного действия. Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, воздействия на окружающую среду. Этого нельзя сказать о тепловой, гидро и атомной энергетике. Все традиционные источники в той или иной мере наносят вред ОС;
  • Безопасность и надёжность. Оборудование долговечное (служит до 30 лет). После 20─25 лет использования фотоэлементы выдают до 80 процентов от своего номинала;
  • Рециркуляция. Солнечные панели полностью перерабатываются и могут быть снова использованы в производстве;
  • Простота обслуживания. Оборудование довольно просто разворачивается и работает в автономном режиме;
  • Хорошо адаптированы для использования в частных домах;
  • Эстетика. Можно установить на крыше или фасаде здания не в ущерб внешнему виду;
  • Хорошо интегрируются в качестве вспомогательных систем энергоснабжения.

Вам также будет интересно:

Гардероб Новый год Шитьё Костюм Кота в сапогах Клей Кружево Сутаж тесьма шнур Ткань
Одним из любимейших сказочных героев является кот в сапогах. И взрослые, и дети обожают...
Как определить пол ребенка?
Будущие мамочки до того, как УЗИ будет иметь возможность рассказать, кто там расположился в...
Маска для лица с яйцом Маска из куриного яйца
Часто женщины за несколько месяцев заранее записываются в салоны красоты для проведения...
Задержка внутриутробного развития плода: причины, степени, последствия Звур симметричная форма
В каждом десятом случае беременности ставится диагноз - задержка внутриутробного развития...
Как сделать своими руками рваные джинсы, нюансы процесса
Рваные джинсы - тенденция не новая. Это скорее доказательство того, что мода циклична....